This chapter is not about one particular method (or a family of methods). Instead, it provides a set of tools useful for better pattern recognition, especially for real-world applications. They include the definition of distance metrics, vector norms, a brief introduction to the idea of distance metric learning, and power mean kernels (which is a family of useful metrics). We also establish by examples that proper normalizations of our data are essential, and introduce a few data normalization and transformation methods.
Review the options below to login to check your access.
Log in with your Cambridge Higher Education account to check access.
If you believe you should have access to this content, please contact your institutional librarian or consult our FAQ page for further information about accessing our content.