Skip to main content Accessibility help
Internet Explorer 11 is being discontinued by Microsoft in August 2021. If you have difficulties viewing the site on Internet Explorer 11 we recommend using a different browser such as Microsoft Edge, Google Chrome, Apple Safari or Mozilla Firefox.

Chapter 9: Distance Metrics and Data Transformations

Chapter 9: Distance Metrics and Data Transformations

pp. 196-218

Authors

, Nanjing University, China
Resources available Unlock the full potential of this textbook with additional resources. There are Instructor restricted resources available for this textbook. Explore resources
  • Add bookmark
  • Cite
  • Share

Summary

This chapter is not about one particular method (or a family of methods). Instead, it provides a set of tools useful for better pattern recognition, especially for real-world applications. They include the definition of distance metrics, vector norms, a brief introduction to the idea of distance metric learning, and power mean kernels (which is a family of useful metrics). We also establish by examples that proper normalizations of our data are essential, and introduce a few data normalization and transformation methods.

Keywords

  • distance metrics
  • norms and means
  • linear regression
  • normalization
  • transformations

About the book

Access options

Review the options below to login to check your access.

Purchase options

eTextbook
US$86.00
Hardback
US$86.00

Have an access code?

To redeem an access code, please log in with your personal login.

If you believe you should have access to this content, please contact your institutional librarian or consult our FAQ page for further information about accessing our content.

Also available to purchase from these educational ebook suppliers