Stars travel around the Galaxy, and galaxies orbit within their groups and clusters, under the force of gravity. Stars are so much denser than the interstellar gas through which they move that neither gas pressure nor the forces from embedded magnetic fields can deflect them from their paths. If we know how mass is distributed, we can find the resulting gravitational force, and from this we can calculate how the positions and velocities of stars and galaxies will change over time.
But we can also use the stellar motions to tell us where the mass is. As we discovered in Chapter 2, much of the matter in the Milky Way cannot be seen directly. Its radiation may be absorbed, as happens for the visible light of stars in the dusty disk. Some material simply emits too weakly: dense clouds of cold gas do not show up easily in radio-telescope maps. The infamous dark matter still remains invisibly mysterious. But, since the orbits of stars take them through different regions of the galaxies they inhabit, their motions at the time we observe them have been affected by the gravitational fields through which they have travelled earlier. So we can use the equations for motion under gravity to infer from observed motions how mass is distributed in those parts of galaxies that we cannot see directly.
Review the options below to login to check your access.
Log in with your Cambridge Aspire website account to check access.
If you believe you should have access to this content, please contact your institutional librarian or consult our FAQ page for further information about accessing our content.