Skip to main content Accessibility help
Internet Explorer 11 is being discontinued by Microsoft in August 2021. If you have difficulties viewing the site on Internet Explorer 11 we recommend using a different browser such as Microsoft Edge, Google Chrome, Apple Safari or Mozilla Firefox.

Chapter 4: Point defect mechanics

Chapter 4: Point defect mechanics

pp. 71-100

Authors

, Stanford University, California, , Stanford University, California
Resources available Unlock the full potential of this textbook with additional resources. There are free resources and Instructor restricted resources available for this textbook. Explore resources
  • Add bookmark
  • Cite
  • Share

Summary

A qualitative understanding of the behaviors of point defects can be established by considering atoms as hard spheres packed together to form the crystal. Crude as the hard sphere model may seem, it can be used to explain many of the observations made about point defects. In Section 4.1, we define the hard sphere radius of an atom and show its influence on the site preference of solute atoms. In Section 4.2, we use the hard sphere model to show the type of the distortions (spherically symmetric or not) in the host crystal around a solute atom. This allows us to explain why certain solutes have a much stronger solid solution hardening effect than others.

We then need to go beyond the hard sphere model in order to be more quantitative. In Section 4.3, we define the Seitz radius, which is more useful than the hard sphere radius for keeping track of the volume occupied by atoms of different kinds in solid solutions. We will see that atoms often appear to take on a different radius as a solute atom in another crystal compared to the radius it takes in its own crystal. In Section 4.4, we apply elasticity theory to predict the elastic fields around a solute atom. For simplicity, the size of the point defect is shrunk to zero and is modeled as force dipoles acting on a point in an elastic medium. In Section 4.5, a more realistic model is developed, in which the solute atom is modeled as an elastic sphere to be inserted into a hole inside an elastic medium. Elastic fields arise because the initial size of the sphere is larger than the initial size of the hole. Even though many atomistic and electronic details concerning point defects are ignored, the models developed in this chapter are increasingly more quantitative and can be used to explain a large number of behaviors of point defects.

Hard sphere model

Hard sphere radius

It is common to treat atoms in a crystal as undeformable spheres and to calculate the atomic sizes from the lattice parameters (measured using X-ray diffraction).We call this the hard sphere approach.

Access options

Review the options below to login to check your access.

Purchase options

eTextbook
US$78.00
Hardback
US$78.00

Have an access code?

To redeem an access code, please log in with your personal login.

If you believe you should have access to this content, please contact your institutional librarian or consult our FAQ page for further information about accessing our content.

Also available to purchase from these educational ebook suppliers