We encountered one instance of Bayesian inference in Chapter 50, based on the quadratic loss in the context of mean-square-error (MSE) estimation. We explained there that the optimal solution for inferring a hidden zero-mean random variable x from observations of another zero-mean random variable y is given by the conditional estimator, E (x|y), whose computation requires knowledge of the conditional distribution, fx|y(x|y).
Review the options below to login to check your access.
Log in with your Cambridge Higher Education account to check access.
If you believe you should have access to this content, please contact your institutional librarian or consult our FAQ page for further information about accessing our content.