THE BASIS OF an MCMC algorithm is the construction of a transition kernel (see Section 6.3), p(x, y), that has an invariant density equal to the target density. Given such a kernel, the process can be started at x0 to yield a draw x1 from p(x0, x1), x2 from p(x1, x2), …, and xG from p(xG–1, xG), where G is the desired number of simulations. After a transient period, the distribution of the xg is approximately equal to the target distribution. The question is how to find a kernel that has the target as its invariant distribution. It is remarkable that there is a general principle for finding such kernels, the Metropolis-Hastings (MH) algorithm. I first discuss a special case – the Gibbs algorithm or Gibbs sampler – and then explain a more general version of the MH algorithm.
It is important to distinguish between the number of simulated values G and the number of observations n in the sample of data that is being analyzed. The former may be made very large – the only restriction comes from computer time and capacity, but the number of observations is fixed at the time the data are collected. Larger values of G lead to more accurate approximations. MCMC algorithms provide an approximation to the exact posterior distribution of a parameter; that is, they approximate the posterior distribution of the parameters, taking the number of observations to be fixed at n.
Review the options below to login to check your access.
Log in with your Cambridge Aspire website account to check access.
If you believe you should have access to this content, please contact your institutional librarian or consult our FAQ page for further information about accessing our content.