Skip to main content Accessibility help
Internet Explorer 11 is being discontinued by Microsoft in August 2021. If you have difficulties viewing the site on Internet Explorer 11 we recommend using a different browser such as Microsoft Edge, Google Chrome, Apple Safari or Mozilla Firefox.

Chapter 7: Simulation by MCMC Methods

Chapter 7: Simulation by MCMC Methods

pp. 93-112

Authors

, Washington University, St Louis
Resources available Unlock the full potential of this textbook with additional resources. There are free resources available for this textbook. Explore resources
  • Add bookmark
  • Cite
  • Share

Summary

THE BASIS OF an MCMC algorithm is the construction of a transition kernel (see Section 6.3), p(x, y), that has an invariant density equal to the target density. Given such a kernel, the process can be started at x0 to yield a draw x1 from p(x0, x1), x2 from p(x1, x2), …, and xG from p(xG–1, xG), where G is the desired number of simulations. After a transient period, the distribution of the xg is approximately equal to the target distribution. The question is how to find a kernel that has the target as its invariant distribution. It is remarkable that there is a general principle for finding such kernels, the Metropolis-Hastings (MH) algorithm. I first discuss a special case – the Gibbs algorithm or Gibbs sampler – and then explain a more general version of the MH algorithm.

It is important to distinguish between the number of simulated values G and the number of observations n in the sample of data that is being analyzed. The former may be made very large – the only restriction comes from computer time and capacity, but the number of observations is fixed at the time the data are collected. Larger values of G lead to more accurate approximations. MCMC algorithms provide an approximation to the exact posterior distribution of a parameter; that is, they approximate the posterior distribution of the parameters, taking the number of observations to be fixed at n.

About the book

Access options

Review the options below to login to check your access.

Purchase options

eTextbook
US$58.00
Hardback
US$75.00
Paperback
US$58.00

Have an access code?

To redeem an access code, please log in with your personal login.

If you believe you should have access to this content, please contact your institutional librarian or consult our FAQ page for further information about accessing our content.

Also available to purchase from these educational ebook suppliers