A communication link involves several stages of signal manipulation: the transmitter transforms the message into a signal that can be sent over a communication channel; the channel distorts the signal and adds noise to it; and the receiver processes the noisy received signal to extract the message. Thus, communication systems design must be based on a sound understanding of signals, and the systems that shape them. In this chapter, we discuss concepts and terminology from signals and systems, with a focus on how we plan to apply them in our discussion of communication systems. Much of this chapter is a review of concepts with which the reader might already be familiar from prior exposure to signals and systems. However, special attention should be paid to the discussion of baseband and passband signals and systems (Sections 2.7 and 2.8). This material, which is crucial for our purpose, is typically not emphasized in a first course on signals and systems. Additional material on the geometric relationship between signals is covered in later chapters, when we discuss digital communication.
Chapter plan
After a review of complex numbers and complex arithmetic in Section 2.1, we provide some examples of useful signals in Section 2.2. We then discuss LTI systems and convolution in Section 2.3. This is followed by Fourier series (Section 2.4) and the Fourier transform (Section 2.5).
Review the options below to login to check your access.
Log in with your Cambridge Higher Education account to check access.
If you believe you should have access to this content, please contact your institutional librarian or consult our FAQ page for further information about accessing our content.