Skip to main content Accessibility help
Internet Explorer 11 is being discontinued by Microsoft in August 2021. If you have difficulties viewing the site on Internet Explorer 11 we recommend using a different browser such as Microsoft Edge, Google Chrome, Apple Safari or Mozilla Firefox.

Chapter 5: Optimization: Soft Computing

Chapter 5: Optimization: Soft Computing

pp. 142-176

Authors

, Idaho State University
Resources available Unlock the full potential of this textbook with additional resources. There are free resources and Instructor restricted resources available for this textbook. Explore resources
  • Add bookmark
  • Cite
  • Share

Extract

In Chapter 5, we look at approaches that belong to heuristic algorithms. These methods are derived from observations nature provide. In our argumentation for specific heuristic optimization algorithms, we discuss the local search and the hill climbing problem. One of the outcomes of this discussion is the argument for attempting to avoid cycling during a search. Tabu search optimization is built on this premise where we avoid cycling. An entirely different class of heuristic optimization algorithms are given by Particle Swarm optimization and Ant Colony optimization algorithms. In contrast to Tabu search and local search, the PSO and AC optimization algorithms utilize a number of agents in order to search for optimality. Another multi agent based algorithm is the Genetic algorithm. GA’s are inspired by Darwin’s survival of the fittest principle and use the terminology found in the field of genetics. Additionally, in this chapter we use heuristic optimization to formulate optimum control concepts, including hybrid control using fuzzy logic-based controllers and Matlab scripts to realize each of the heuristic optimization algorithms.

Keywords

  • Local search
  • Tabu search algorithm
  • particle swarm optimization
  • ant colony optimization
  • genetic algorithm

About the book

Access options

Review the options below to login to check your access.

Purchase options

eTextbook
US$99.99
Hardback
US$99.99

Have an access code?

To redeem an access code, please log in with your personal login.

If you believe you should have access to this content, please contact your institutional librarian or consult our FAQ page for further information about accessing our content.

Also available to purchase from these educational ebook suppliers