Portions of this chapter are taken from Introduction to Chemical Engineering Analysis by Russell and Denn (1972) and are used with permission.
In Chapter 2, a constitutive equation for reaction rate was introduced, and the experimental means of verifying it was discussed for some simple systems. The use of the verified reaction-rate expression in some introductory design problems was illustrated in Chapter 2. Chapter 3 expanded on the analysis of reactors presented in Chapter 2 by dealing with heat exchangers and showing how the analysis is carried out for systems with two control volumes. A constitutive rate expression for heat transfer was presented, and experiments to verify it were discussed.
This chapter considers the analysis of mass contactors, devices in which there are at least two phases and in which some species are transferred between the phases. The analysis will produce a set of equations for two control volumes just as it did for heat exchangers. The rate expression for mass transfer is similar to that for heat transfer; both have a term to account for the area between the two control volumes. In heat exchangers this area is determined by the geometry of the exchanger and is readily obtained. In a mass contactor this area is determined by multiphase fluid mechanics, and its estimation requires more effort. In mass contactors in which transfer occurs across a membrane the nominal area determination is readily done just as for heat exchangers, but the actual area for transfer may be less well defined.
Review the options below to login to check your access.
Log in with your Cambridge Aspire website account to check access.
If you believe you should have access to this content, please contact your institutional librarian or consult our FAQ page for further information about accessing our content.