Skip to main content Accessibility help
Internet Explorer 11 is being discontinued by Microsoft in August 2021. If you have difficulties viewing the site on Internet Explorer 11 we recommend using a different browser such as Microsoft Edge, Google Chrome, Apple Safari or Mozilla Firefox.

Chapter 28: Group theory

Chapter 28: Group theory

pp. 1041-1075

Authors

, University of Cambridge, , University of Cambridge,
Resources available Unlock the full potential of this textbook with additional resources. There are Instructor restricted resources available for this textbook. Explore resources
  • Add bookmark
  • Cite
  • Share

Summary

For systems that have some degree of symmetry, full exploitation of that symmetry is desirable. Significant physical results can sometimes be deduced simply by a study of the symmetry properties of the system under investigation. Consequently it becomes important, for such a system, to identify all those operations (rotations, reflections, inversions) that carry the system into a physically indistinguishable copy of itself.

The study of the properties of the complete set of such operations forms one application of group theory. Though this is the aspect of most interest to the physical scientist, group theory itself is a much larger subject and of great importance in its own right. Consequently we leave until the next chapter any direct applications of group theoretical results and concentrate on building up the general mathematical properties of groups.

Groups

As an example of symmetry properties, let us consider the sets of operations, such as rotations, reflections, and inversions, that transform physical objects, for example molecules, into physically indistinguishable copies of themselves, so that only the labelling of identical components of the system (the atoms) changes in the process. For differently shaped molecules there are different sets of operations, but in each case it is a well-defined set, and with a little practice all members of each set can be identified.

As simple examples, consider (a) the hydrogen molecule, and (b) the ammonia molecule illustrated in figure 28.1.

About the book

Access options

Review the options below to login to check your access.

Purchase options

eTextbook
US$75.00
Paperback
US$75.00

Have an access code?

To redeem an access code, please log in with your personal login.

If you believe you should have access to this content, please contact your institutional librarian or consult our FAQ page for further information about accessing our content.

Also available to purchase from these educational ebook suppliers