In addition to spectroscopy, planetary geoscience uses some other tools familiar to most geologists, and some tools that are either unique or involve new twists in how they are employed. We explain how stratigraphic principles are adapted for planets (using strata produced by impacts), how the density of craters can be quantified to derive relative ages of geologic units, and how radioisotope measurements on samples, where available, give absolute ages. We explain how images from orbiting and landed spacecraft are used, along with chronologic and remote-sensing data, to make planetary geologic maps at different scales. We consider various geophysical techniques that are used on spacecraft to obtain information about planetary potential fields, interior structure, and surface topography. We summarize the kinds of extraterrestrial materials that are available for laboratory investigations, and briefly describe the analytical techniques used to characterize their mineralogy, petrology, and geochemistry. We also examine some techniques that are adapted as remote sensing tools for analyses of rocks and soils on planetary surfaces.
Review the options below to login to check your access.
Log in with your Cambridge Higher Education account to check access.
If you believe you should have access to this content, please contact your institutional librarian or consult our FAQ page for further information about accessing our content.