Skip to main content Accessibility help
Internet Explorer 11 is being discontinued by Microsoft in August 2021. If you have difficulties viewing the site on Internet Explorer 11 we recommend using a different browser such as Microsoft Edge, Google Chrome, Apple Safari or Mozilla Firefox.

Chapter 1: Introduction to seismic data and processing

Chapter 1: Introduction to seismic data and processing

pp. 1-30

Authors

, University of Houston
Resources available Unlock the full potential of this textbook with additional resources. There are free resources and Instructor restricted resources available for this textbook. Explore resources
  • Add bookmark
  • Cite
  • Share

Summary

The discipline of subsurface seismic imaging, or mapping the subsurface using seismic waves, takes a remote sensing approach to probe the Earth's interior. It measures ground motion along the surface and in wellbores, then puts the recorded data through a series of data processing steps to produce seismic images of the Earth's interior in terms of variations in seismic velocity and density. The ground movements recorded by seismic sensors (such as geophones and seismometers onshore, or hydrophones and ocean bottom seismometers offshore) contain information on the media's response to the seismic wave energy that traverses them. Hence the first topic of this chapter is on seismic data and their acquisition, processing, and interpretation processes. Because nearly all modern seismic data are in digital form in order to be stored and analyzed in computers, we need to learn several important concepts about sampled time series such as sampling rate and aliasing; the latter is an artifact due to under-sampling. In exploration seismology, many useful and quantifiable properties of seismic data are called seismic attributes. Two of the most common seismic attributes are the amplitude and phase of seismic wiggles. They are introduced here together with relevant processing issues such as gain control, phase properties of wavelets, and the Hilbert transform, which enables many time-domain seismic attributes to be extracted. To process real seismic data, we also need to know the basic issues of data formats, the rules of storing seismic data in computers. To assure that the data processing works, we need to conduct many quality control checks. These two topics are discussed together because in practice some simple quality control measures need to be applied at the beginning stage of a processing project.

About the book

Access options

Review the options below to login to check your access.

Purchase options

eTextbook
US$106.00
Hardback
US$106.00

Have an access code?

To redeem an access code, please log in with your personal login.

If you believe you should have access to this content, please contact your institutional librarian or consult our FAQ page for further information about accessing our content.

Also available to purchase from these educational ebook suppliers