Skip to main content Accessibility help
Internet Explorer 11 is being discontinued by Microsoft in August 2021. If you have difficulties viewing the site on Internet Explorer 11 we recommend using a different browser such as Microsoft Edge, Google Chrome, Apple Safari or Mozilla Firefox.

Chapter 5: Classical Linear Regression Model

Chapter 5: Classical Linear Regression Model

pp. 57-89

Authors

, University of Gothenburg
Resources available Unlock the full potential of this textbook with additional resources. There are free resources and Instructor restricted resources available for this textbook. Explore resources
  • Add bookmark
  • Cite
  • Share

Summary

The aim with regression analysis is to summarize the observed data and study how the response of a dependent variable varies as the values of the independent variable(s) change. There are many models that examine this relationship by obtaining the estimates of parameters in a regression model. The classical linear regression model (CLRM) is the basis of all the other models discussed in this book. This chapter discusses the CLRM in detail using the ordinary least squares (OLS) estimation method. The outcome of OLS can also be used as a benchmark in more advanced analysis. The focus is on the assumptions and applications of this technique, starting from a single-regression model with one independent variable and then covering multiple linear regression models with many independent variables. The chapter provides an application to the capital asset pricing model, lab work on the CLRM, and a mini case study.

Keywords

  • Classical linear regression model
  • assumptions
  • the OLS estimation method
  • tests for parameters
  • goodness of fit
  • interpretation of the estimates
  • interaction effects
  • application to the CAPM
  • lab work
  • mini case

About the book

Access options

Review the options below to login to check your access.

Purchase options

eTextbook
US$64.99
Hardback
US$140.00
Paperback
US$64.99

Have an access code?

To redeem an access code, please log in with your personal login.

If you believe you should have access to this content, please contact your institutional librarian or consult our FAQ page for further information about accessing our content.

Also available to purchase from these educational ebook suppliers