Skip to main content Accessibility help
Internet Explorer 11 is being discontinued by Microsoft in August 2021. If you have difficulties viewing the site on Internet Explorer 11 we recommend using a different browser such as Microsoft Edge, Google Chrome, Apple Safari or Mozilla Firefox.

Chapter 9: Distance measures for quantum information

Chapter 9: Distance measures for quantum information

pp. 399-424

Authors

, , Massachusetts Institute of Technology
  • Add bookmark
  • Cite
  • Share

Summary

What does it mean to say that two items of information are similar? What does it mean to say that information is preserved by some process? These questions are central to a theory of quantum information processing, and the purpose of this chapter is the development of distance measures giving quantitative answers to these questions. Motivated by our two questions we will be concerned with two broad classes of distance measures, static measures and dynamic measures. Static measures quantify how close two quantum states are, while dynamic measures quantify how well information has been preserved during a dynamic process. The strategy we take is to begin by developing good static measures of distance, and then to use those static measures as the basis for the development of dynamic measures of distance.

There is a certain arbitrariness in the way distance measures are defined, both classically and quantum mechanically, and the community of people studying quantum computation and quantum information has found it convenient to use a variety of distance measures over the years. Two of those measures, the trace distance and the fidelity, have particularly wide currency today, and we discuss both these measures in detail in this chapter. For the most part the properties of both are quite similar, however for certain applications one may be easier to deal with than the other. It is for this reason and because both are widely used within the quantum computation and quantum information community that we discuss both measures.

About the book

Access options

Review the options below to login to check your access.

Purchase options

eTextbook
US$89.00
Hardback
US$89.00

Have an access code?

To redeem an access code, please log in with your personal login.

If you believe you should have access to this content, please contact your institutional librarian or consult our FAQ page for further information about accessing our content.

Also available to purchase from these educational ebook suppliers