In this section, we will contruct a gauge-invariant operator, the Wilson loop, whose vacuum expectation value (VEV for short) can diagnose whether or not a gauge theory exhibits confinement. A theory is confining if all finite-energy states are invariant under a global gauge transformation. U(1) gauge theory—quantum electrodynamics—is not confining, because there are finite-energy states (such as the state of a single electron) that have nonzero electric charge, and hence change by a phase under a global gauge transformation.
Confinement is a nonperturbative phenomenon; it cannot be seen at any finite order in the kind of weak-coupling perturbation theory that we have been doing. (This is why we had no trouble calculating quark and gluon scattering amplitudes.) In this section, we will introduce lattice gauge theory, in which spacetime is replaced by a discrete set of points; the inverse lattice spacing 1/a then acts as an ultraviolet cutoff (see section 29). This cutoff theory can be analyzed at strong coupling, and, as we will see, in this regime the VEV of the Wilson loop is indicative of confinement. The outstanding question is whether this phenomenon persists as we simultaneously lower the coupling and increase the ultraviolet cutoff (with the relationship between the two governed by the beta function), or whether we encounter a phase transition, signaled by a sudden change in the behavior of the Wilson loop VEV.
Review the options below to login to check your access.
Log in with your Cambridge Higher Education account to check access.
If you believe you should have access to this content, please contact your institutional librarian or consult our FAQ page for further information about accessing our content.