Quantum field theory
Quantum field theory has traditionally been a pursuit of particle physicists. In recent years, some condensed matter physicists have also succumbed to its charms, but the rationale adopted in this book is the traditional one: that the reason for studying field theory lies in the hope that it will shed light on the fundamental particles of matter and their interactions. Surely (the argument goes), a structure that incorporates quantum theory – which was so amazingly successful in resolving the many problems of atomic physics in the early part of this century – and field theory – the language in which was cast the equally amazing picture of reality uncovered by Faraday, Maxwell and Hertz – surely, a structure built on these twin foundations should provide some insight into the fundamental nature of matter.
And indeed it has done. Quantum electrodynamics, the first child of this marriage, predicted (to name only one of its successes) the anomalous magnetic moment of the electron correctly to six decimal places; what more could one want of a physical theory? Quantum electrodynamics was formulated in about 1950, many years after quantum mechanics. Planck's original quantum hypothesis (1901), however, was indeed that the electromagnetic field be quantised; the quanta we call photons. In the years leading up to 1925, the quantum idea was applied to the mechanics of atomic motion, and this resulted in particle-wave duality and the Schrodinger wave equation for electrons.
Review the options below to login to check your access.
Log in with your Cambridge Aspire website account to check access.
If you believe you should have access to this content, please contact your institutional librarian or consult our FAQ page for further information about accessing our content.