Chapter 5 teaches how data analysts can change the scale of a distribution by performing a linear transformation, which is the process of adding, subtracting, multiplying, or dividing the data by a constant. Adding and subtracting a constant will change the mean of a variable, but not its standard deviation or variance. Multiplying and dividing by a constant will change the mean, the standard deviation, and the variance of a dataset. A table shows students shows how linear transformations change the values of models of central tendency and variability. One special linear transformation is the z-score. All z-score values have a mean of 0 and a standard deviation of 1. Putting datasets on a common scale permits comparisons across different units. But linear transformations, like the z-score transformation, force the data to have the desired mean and standard deviation. Yet, they do not change the shape of the distribution – only its scale. Indeed, all scales are arbitrary, and scientists can use linear transformations to give their data any mean and standard deviation they choose.
Review the options below to login to check your access.
Log in with your Cambridge Aspire website account to check access.
If you believe you should have access to this content, please contact your institutional librarian or consult our FAQ page for further information about accessing our content.