To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Given a general polarized $K3$ surface $S\subset \mathbb P^g$ of genus $g\le 14$, we study projections of minimal degree and their variational structure. In particular, we prove that the degree of irrationality of all such surfaces is at most $4$, and that for $g=7,8,9,11$ there are no rational maps of degree $3$ induced by the primitive linear system. Our methods combine vector bundle techniques à la Lazarsfeld with derived category tools and also make use of the rich theory of singular curves on $K3$ surfaces.
We study the behaviour of Kauffman bracket skein modules of 3-manifolds under gluing along surfaces. For this we extend this notion to $3$-manifolds with marking consisting of open intervals and circles in the boundary. The new module is called the stated skein module.
The first results concern non-injectivity of certain natural maps defined when forming connected sums along spheres or disks. These maps are injective for surfaces or for generic quantum parameter, but we show that in general they are not when the quantum parameter is a root of 1. We show that when the quantum parameter is a root of 1, the empty skein is zero in a connected sum where each constituent manifold has non-empty marking. We also prove various non-injectivity results for the Chebyshev-Frobenius map and the map induced by deleting marked balls.
We then interpret stated skein modules as a monoidal symmetric functor from a category of “decorated cobordisms” to a category of algebras and their bimodules. We apply this to deduce properties of stated skein modules as a Van-Kampen like theorem, a computation through Heegaard decompositions and a relation to Hochshild homology for trivial circle bundles over surfaces.
We show that Calabi–Yau fibrations over curves are uniformly K-stable in an adiabatic sense if and only if the base curves are K-stable in the log-twisted sense. Moreover, we prove that there are cscK metrics for such fibrations when the total spaces are smooth.
This article is dedicated to investigating limit behaviours of invariant measures with respect to delay and system parameters of 3D Navier–Stokes–Voigt equations. Firstly, the well-posedness of such a system is obtained on arbitrary open sets that satisfy the Poincaré inequality, and then a unique minimal pullback attractor is attained by using the energy equation method and asymptotic compactness property. Furthermore, we construct a family of invariant Borel probability measures, which are supported on the pullback attractors. Specifically, when the external forcing terms are periodic in time, the periodic invariant measure can be obtained. Finally, as the delay approaches zero and system parameters tend to some numbers, the limit of the invariant measure sequences for this class of equations must be the invariant measure of the corresponding limit equations.
What proportion of integers $n \leq N$ may be expressed as $x^2 + dy^2$ for some $d \leq \Delta $, with $x,y$ integers? Writing $\Delta = (\log N)^{\log 2} 2^{\alpha \sqrt {\log \log N}}$ for some $\alpha \in (-\infty , \infty )$, we show that the answer is $\Phi (\alpha ) + o(1)$, where $\Phi $ is the Gaussian distribution function $\Phi (\alpha ) = \frac {1}{\sqrt {2\pi }} \int ^{\alpha }_{-\infty } e^{-x^2/2} dx$.
A consequence of this is a phase transition: Almost none of the integers $n \leq N$ can be represented by $x^2 + dy^2$ with $d \leq (\log N)^{\log 2 - \varepsilon }$, but almost all of them can be represented by $x^2 + dy^2$ with $d \leq (\log N)^{\log 2 + \varepsilon}\kern-1.5pt$.
We describe the structure of regular codimension $1$ foliations with numerically projectively flat tangent bundle on complex projective manifolds of dimension at least $4$. Along the way, we prove that either the normal bundle of a regular codimension $1$ foliation is pseudo-effective, or its conormal bundle is nef.
Given a polarised abelian variety over a number field, we provide totally explicit upper bounds for the cardinality of the rational points whose Néron-Tate height is less than a small threshold. These imply new estimates for the number of torsion points as well as the minimal height of a non-torsion point. Our bounds involve the Faltings height and dimension of the abelian variety together with the degrees of the polarisation and the number field but we also get a stronger statement where we use certain successive minima associated to the period lattice at a fixed archimedean place, in the spirit of a result of David for elliptic curves.
Let F be a non-archimedean locally compact field of residual characteristic p, let $G=\operatorname {GL}_{r}(F)$ and let $\widetilde {G}$ be an n-fold metaplectic cover of G with $\operatorname {gcd}(n,p)=1$. We study the category $\operatorname {Rep}_{\mathfrak {s}}(\widetilde {G})$ of complex smooth representations of $\widetilde {G}$ having inertial equivalence class $\mathfrak {s}=(\widetilde {M},\mathcal {O})$, which is a block of the category $\operatorname {Rep}(\widetilde {G})$, following the ‘type theoretical’ strategy of Bushnell-Kutzko.
Precisely, first we construct a ‘maximal simple type’ $(\widetilde {J_{M}},\widetilde {\lambda }_{M})$ of $\widetilde {M}$ as an $\mathfrak {s}_{M}$-type, where $\mathfrak {s}_{M}=(\widetilde {M},\mathcal {O})$ is the related cuspidal inertial equivalence class of $\widetilde {M}$. Along the way, we prove the folklore conjecture that every cuspidal representation of $\widetilde {M}$ could be constructed explicitly by a compact induction. Secondly, we construct ‘simple types’ $(\widetilde {J},\widetilde {\lambda })$ of $\widetilde {G}$ and prove that each of them is an $\mathfrak {s}$-type of a certain block $\operatorname {Rep}_{\mathfrak {s}}(\widetilde {G})$. When $\widetilde {G}$ is either a Kazhdan-Patterson cover or Savin’s cover, the corresponding blocks turn out to be those containing discrete series representations of $\widetilde {G}$. Finally, for a simple type $(\widetilde {J},\widetilde {\lambda })$ of $\widetilde {G}$, we describe the related Hecke algebra $\mathcal {H}(\widetilde {G},\widetilde {\lambda })$, which turns out to be not far from an affine Hecke algebra of type A, and is exactly so if $\widetilde {G}$ is one of the two special covers mentioned above.
We leave the construction of a ‘semi-simple type’ related to a general block $\operatorname {Rep}_{\mathfrak {s}}(\widetilde {G})$ to a future phase of the work.
We show that the sets of $d$-dimensional Latin hypercubes over a non-empty set $X$, with $d$ running over the positive integers, determine an operad which is isomorphic to a sub-operad of the endomorphism operad of $X$. We generalise this to categories with finite products, and then further to internal versions for certain Cartesian closed monoidal categories with pullbacks.
Mukai’s program in [16] seeks to recover a K3 surface X from any curve C on it by exhibiting it as a Fourier–Mukai partner to a Brill–Noether locus of vector bundles on the curve. In the case X has Picard number one and the curve $C\in |H|$ is primitive, this was confirmed by Feyzbakhsh in [11, 13] for $g\geq 11$ and $g\neq 12$. More recently, Feyzbakhsh has shown in [12] that certain moduli spaces of stable bundles on X are isomorphic to the Brill–Noether locus of curves in $|H|$ if g is sufficiently large. In this paper, we work with irreducible curves in a nonprimitive ample linear system $|mH|$ and prove that Mukai’s program is valid for any irreducible curve when $g\neq 2$, $mg\geq 11$ and $mg\neq 12$. Furthermore, we introduce the destabilising regions to improve Feyzbakhsh’s analysis in [12]. We show that there are hyper-Kähler varieties as Brill–Noether loci of curves in every dimension.
We provide two constructions of Gaussian random holomorphic sections of a Hermitian holomorphic line bundle $(L,h_{L})$ on a Hermitian complex manifold $(X,\Theta )$, that are particularly interesting in the case where the space of $\mathcal {L}^2$-holomorphic sections $H^{0}_{(2)}(X,L)$ is infinite dimensional. We first provide a general construction of Gaussian random holomorphic sections of L, which, if $H^{0}_{(2)}(X,L)$ is infinite dimensional, are almost never $\mathcal {L}^2$-integrable on X. The second construction combines the abstract Wiener space theory with the Berezin–Toeplitz quantization and yields a Gaussian ensemble of random $\mathcal {L}^2$-holomorphic sections. Furthermore, we study their random zeros in the context of semiclassical limits, including their distributions, large deviation estimates, local fluctuations and hole probabilities.
In this paper, we report the spatiotemporal dynamics of an intraguild predation (IGP)-type predator–prey model incorporating harvesting and prey-taxis. We first discuss the local and global existence of the classical solutions in N-dimensional space. It is found that the model has a global classical solution when controlling the prey-taxis coefficient in a certain range. Thereafter, we focus on the existence of the steady-state bifurcation. Moreover, we theoretically investigate the properties of the bifurcating solution near the steady-state bifurcation critical threshold. As a consequence, the spatial pattern formation of this model can be theoretically confirmed. Importantly, by means of rigorous theoretical derivation, we provide discriminant criteria on the stability of the bifurcating solution. Finally, the complicated patterns are numerically displayed. It is demonstrated that the harvesting and prey-taxis significantly affect the pattern formation of this IGP-type predator–prey model. Our main results of this paper reveal that (i) The repulsive prey-taxis could destabilize the spatial homogeneity, while the attractive prey-taxis effect and self-diffusion will stabilize the spatial homogeneity of this model. (ii) Numerical results suggest that over-harvesting for prey or predators is not advisable, it can lead to an ecological imbalance due to a significant reduction in population numbers. However, harvesting within a certain range is a feasible approach.
Given a presentation of a monoid $M$, combined work of Pride and of Guba and Sapir provides an exact sequence connecting the relation bimodule of the presentation (in the sense of Ivanov) with the first homology of the Squier complex of the presentation, which is naturally a $\mathbb ZM$-bimodule. This exact sequence was used by Kobayashi and Otto to prove the equivalence of Pride’s finite homological type property with the homological finiteness condition bi-$\mathrm {FP}_3$. Guba and Sapir used this exact sequence to describe the abelianization of a diagram group. We prove here a generalization of this exact sequence of bimodules for presentations of associative algebras. Our proof is more elementary than the original proof for the special case of monoids.
are obtained, in the range of exponents $p\gt 1$, $\sigma \ge -2$. More precisely, we establish conditions fulfilled by the initial data in order for the solutions to either blow-up in finite time or decay to zero as $t\to \infty$ and, in the latter case, we also deduce decay rates and large time behavior. In the limiting case $\sigma =-2$, we prove the existence of non-trivial, non-negative solutions, in stark contrast to the homogeneous case. A transformation to a generalized Fisher–KPP equation is derived and employed in order to deduce these properties.
The global analogue of a Henselian local ring is a Henselian pair – a ring R and an ideal I which satisfy a condition resembling Hensel’s lemma regarding lifting coprime factorizations of monic polynomials over $R/I$ to factorizations over R. The geometric counterpart is the notion of a Henselian scheme, which can serve as a substitute for formal schemes in applications such as deformation theory.
In this paper, we prove a GAGA-style cohomology comparison result for Henselian schemes in positive characteristic, making use of a ‘Henselian étale’ topology defined in previous work in order to leverage exactness of finite pushforward for abelian sheaves in the étale topology of schemes. We will also discuss algebraizability of coherent sheaves on the Henselization of a proper scheme, proving (without a positive characteristic restriction) algebraizability for coherent subsheaves. We can then deduce a Henselian version of Chow’s theorem on algebraization and the algebraizability of maps between Henselizations of proper schemes.
Precise knowledge of magnetic fields is crucial in many medical imaging applications such as magnetic resonance imaging (MRI) or magnetic particle imaging (MPI), as they form the foundation of these imaging systems. Mathematical methods are essential for efficiently analysing the magnetic fields in the entire field-of-view. In this work, we propose a compact and unique representation of the magnetic fields using real solid spherical harmonic expansions, which can be obtained by spherical t-designs. To ensure a unique representation, the expansion point is shifted at the level of the expansion coefficients. As an application scenario, these methods are used to acquire and analyse the magnetic fields of an MPI system. Here, the field-free-point of the spatial encoding field serves as the unique expansion point.
Let $F:\; {\mathscr {C}} \to {\mathscr {E}} \ $ be a functor from a category $\mathscr {C} \ $ to a homological (Borceux–Bourn) or semi-abelian (Janelidze–Márki–Tholen) category $\mathscr {E}$. We investigate conditions under which the homology of an object $X$ in $\mathscr {C}$ with coefficients in the functor $F$, defined via projective resolutions in $\mathscr {C}$, remains independent of the chosen resolution. Consequently, the left derived functors of $F$ can be constructed analogously to the classical abelian case.
Our approach extends the concept of chain homotopy to a non-additive setting using the technique of imaginary morphisms. Specifically, we utilize the approximate subtractions of Bourn–Janelidze, originally introduced in the context of subtractive categories. This method is applicable when $\mathscr {C}$ is a pointed regular category with finite coproducts and enough projectives, provided the class of projectives is closed under protosplit subobjects, a new condition introduced in this article and naturally satisfied in the abelian context. We further assume that the functor $F$ meets certain exactness conditions: for instance, it may be protoadditive and preserve proper morphisms and binary coproducts—conditions that amount to additivity when $\mathscr {C}$ and $\mathscr {E}$ are abelian categories.
Within this framework, we develop a basic theory of derived functors, compare it with the simplicial approach, and provide several examples.
Let $e$ and $q$ be fixed co-prime integers satisfying $1\lt e\lt q$. Let $\mathscr {C}$ be a certain family of deformations of the curve $y^e=x^q$. That family is called the $(e,q)$-curve and is one of the types of curves called plane telescopic curves. Let $\varDelta$ be the discriminant of $\mathscr {C}$. Following pioneering work by Buchstaber and Leykin (BL), we determine the canonical basis $\{ L_j \}$ of the space of derivations tangent to the variety $\varDelta =0$ and describe their specific properties. Such a set $\{ L_j \}$ gives rise to a system of linear partial differential equations (heat equations) satisfied by the function $\sigma (u)$ associated with $\mathscr {C}$, and eventually gives its explicit power series expansion. This is a natural generalisation of Weierstrass’ result on his sigma function. We attempt to give an accessible description of various aspects of the BL theory. Especially, the text contains detailed proofs for several useful formulae and known facts since we know of no works which include their proofs.
In this article, we investigate necessary and sufficient conditions on the perturbation ρ for the existence of positive least energy solutions of the critical singular semilinear elliptic equation $ -\Delta u = \frac{|u|^{2^{*}(s)-2}}{|x|^s}u + \rho(u) $ with Dirichlet boundary condition in a bounded smooth domain in $\mathbb R^n$ containing the origin, where $2^*(s)=\frac{2(n-s)}{n-2}$, $0\leq s \lt 2 \lt n$. We show that the almost necessary and sufficient condition obtained for the case s = 0 in [1] differs conceptually when $0 \lt s \lt 2$.