To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we establish Newton–Maclaurin-type inequalities for functions arising from linear combinations of primitively symmetric polynomials. This generalization extends the classical Newton–Maclaurin inequality to a broader class of functions.
Let $(A,\mathfrak{m} )$ be a hypersurface local ring of dimension $d \geq 1$ and let I be an $\mathfrak{m} $-primary ideal. We show that there is a integer rI$\geq\;-1$ (depending only on I) such that if M is any non-free maximal Cohen–Macaulay (= MCM) A-module the function $n \rightarrow \ell(\operatorname{Tor}^A_1(M, A/I^{n+1}))$ (which is of polynomial type) has degree rI. Analogous results hold for Hilbert polynomials associated to Ext-functors. Surprisingly, a key ingredient is the classification of thick subcategories of the stable category of MCM A-modules (obtained by Takahashi, see [11, 6.6]).
We consider the Cauchy problem of the non-linear Schrödinger equation with the modulated dispersion and power type non-linearities in any spatial dimensions. We adapt the Young integral theory developed by Chouk–Gubinelli [7] and multilinear estimates which are based on divisor counting and show the local well-posedness. This generalizes the result by Chouk–Gubinelli [7] in terms of the dimension and the order of the non-linearity.
This work investigates the online machine learning problem of prediction with expert advice in an adversarial setting through numerical analysis of, and experiments with, a related partial differential equation. The problem is a repeated two-person game involving decision-making at each step informed by $n$ experts in an adversarial environment. The continuum limit of this game over a large number of steps is a degenerate elliptic equation whose solution encodes the optimal strategies for both players. We develop numerical methods for approximating the solution of this equation in relatively high dimensions ($n\leq 10$) by exploiting symmetries in the equation and the solution to drastically reduce the size of the computational domain. Based on our numerical results we make a number of conjectures about the optimality of various adversarial strategies, in particular about the non-optimality of the COMB strategy.
where $\Omega\subset \mathbb{R}^N(N\ge3)$ denotes a smooth bounded domain, ν represents the unit outer normal vector to $\partial \Omega$, c is a positive constant, and λ acts as a Lagrange multiplier. When the non-linearity f exhibits a general mass supercritical growth at infinity, we establish the existence of normalized solutions, which are not necessarily positive solutions and can be characterized as mountain pass type critical points of the associated constraint functional. Our approach provides a uniform treatment of various non-linearities, including cases such as $f(u)=|u|^{p-2}u$, $|u|^{q-2}u+ |u|^{p-2}u$, and $-|u|^{q-2}u+|u|^{p-2}u$, where $2 \lt q \lt 2+\frac{4}{N} \lt p \lt 2^*$. The result is obtained through a combination of a minimax principle with Morse index information for constrained functionals and a novel blow-up analysis for the NLS equation under Neumann boundary conditions.
This article is concerned with the spreading speed and traveling waves of a lattice prey–predator system with non-local diffusion in a periodic habitat. With the help of an associated scalar lattice equation, we derive the invasion speed for the predator. More specifically, when the dispersal kernel of the predator is exponentially bounded, the invasion speed is finite and can be characterized in terms of principal eigenvalues; while the dispersal kernel is algebraically decaying, the invasion speed is infinite and the accelerated spreading rate is obtained. Furthermore, the existence and non-existence of traveling waves connecting the semi-equilibrium point to a uniformly persistent state are established.
In this paper, we prove a new uncertainty principle for functions with radial symmetry by differentiating a radial version of the Stein–Weiss inequality. The difficulty is to prove the differentiability in the limit of the best constant that unlike the general case it is not known. We provide also an integral alternative formula for the logarithmic weight $(\log|\xi|)$ in Fourier domain.
In this paper, we establish suitable characterisations for a pair of functions $(W(x),H(x))$ on a bounded, connected domain $\Omega \subset \mathbb{R}^n$ in order to have the following Hardy inequality:
where d(x) is a suitable quasi-norm (gauge), $|\xi|^2_A = \langle A(x)\xi, \xi \rangle$ for $\xi \in \mathbb{R}^n$ and A(x) is an n × n symmetric, uniformly positive definite matrix defined on a bounded domain $\Omega \subset \mathbb{R}^n$. We also give its Lp analogue. As a consequence, we present examples for a standard Laplacian on $\mathbb{R}^n$, Baouendi–Grushin operator, and sub-Laplacians on the Heisenberg group, the Engel group and the Cartan group. Those kind of characterisations for a pair of functions $(W(x),H(x))$ are obtained also for the Rellich inequality. These results answer the open problems of Ghoussoub-Moradifam [16].
We show that for all real biquadratic fields not containing $\sqrt{2}$, $\sqrt{3}$, $\sqrt{5}$, $\sqrt{6}$, $\sqrt{7}$ and $\sqrt{13}$, the Pythagoras number of the ring of algebraic integers is at least 6. We also provide an upper bound on the norm and the minimal (codifferent) trace of additively indecomposable integers in some families of these fields.
We prove that every locally compact second countable group G arises as the outer automorphism group $\operatorname{Out} M$ of a II1 factor, which was so far only known for totally disconnected groups, compact groups, and a few isolated examples. We obtain this result by proving that every locally compact second countable group is a centralizer group, a class of Polish groups that arise naturally in ergodic theory and that may all be realized as $\operatorname{Out} M$.
Deep neural networks and other modern machine learning models are often susceptible to adversarial attacks. Indeed, an adversary may often be able to change a model’s prediction through a small, directed perturbation of the model’s input – an issue in safety-critical applications. Adversarially robust machine learning is usually based on a minmax optimisation problem that minimises the machine learning loss under maximisation-based adversarial attacks. In this work, we study adversaries that determine their attack using a Bayesian statistical approach rather than maximisation. The resulting Bayesian adversarial robustness problem is a relaxation of the usual minmax problem. To solve this problem, we propose Abram – a continuous-time particle system that shall approximate the gradient flow corresponding to the underlying learning problem. We show that Abram approximates a McKean–Vlasov process and justify the use of Abram by giving assumptions under which the McKean–Vlasov process finds the minimiser of the Bayesian adversarial robustness problem. We discuss two ways to discretise Abram and show its suitability in benchmark adversarial deep learning experiments.
We provide a complete classification of Teichmüller curves occurring in hyperelliptic components of the meromorphic strata of differentials. Using a non-existence criterion based on how Teichmüller curves intersect the boundary of the moduli space we derive a contradiction to the algebraicity of any candidate outside of Hurwitz covers of strata with projective dimension one, and Hurwitz covers of zero residue loci in strata with projective dimension two.
Let q be a power of a prime p, let $\mathbb F_q$ be the finite field with q elements and, for each nonconstant polynomial $F\in \mathbb F_{q}[X]$ and each integer $n\ge 1$, let $s_F(n)$ be the degree of the splitting field (over $\mathbb F_q$) of the iterated polynomial $F^{(n)}(X)$. In 1999, Odoni proved that $s_A(n)$ grows linearly with respect to n if $A\in \mathbb F_q[X]$ is an additive polynomial not of the form $aX^{p^h}$; moreover, if q = p and $B(X)=X^p-X$, he obtained the formula $s_{B}(n)=p^{\lceil \log_p n\rceil}$. In this paper we note that $s_F(n)$ grows at least linearly unless $F\in \mathbb F_q[X]$ has an exceptional form and we obtain a stronger form of Odoni’s result, extending it to affine polynomials. In particular, we prove that if A is additive, then $s_A(n)$ resembles the step function $p^{\lceil \log_p n\rceil}$ and we indeed have the identity $s_A(n)=\alpha p^{\lceil \log_p \beta n\rceil}$ for some $\alpha, \beta\in \mathbb Q$, unless A presents a special irregularity of dynamical flavour. As applications of our main result, we obtain statistics for periodic points of linear maps over $\mathbb F_{q^i}$ as $i\to +\infty$ and for the factorization of iterates of affine polynomials over finite fields.
We show that every $(n,d,\lambda )$-graph contains a Hamilton cycle for sufficiently large $n$, assuming that $d\geq \log ^{6}n$ and $\lambda \leq cd$, where $c=\frac {1}{70000}$. This significantly improves a recent result of Glock, Correia, and Sudakov, who obtained a similar result for $d$ that grows polynomially with $n$. The proof is based on a new result regarding the second largest eigenvalue of the adjacency matrix of a subgraph induced by a random subset of vertices, combined with a recent result on connecting designated pairs of vertices by vertex-disjoint paths in $(n,d,\lambda )$-graphs. We believe that the former result is of independent interest and will have further applications.
A tantalizing open problem, posed independently by Stiebitz in 1995 and by Alon in 1996 and again in 2006, asks whether for every pair of integers $s,t \ge 1$ there exists a finite number $F(s,t)$ such that the vertex set of every digraph of minimum out-degree at least $F(s,t)$ can be partitioned into non-empty parts $A$ and $B$ such that the subdigraphs induced on $A$ and $B$ have minimum out-degree at least $s$ and $t$, respectively.
In this short note, we prove that if $F(2,2)$ exists, then all the numbers $F(s,t)$ with $s,t\ge 1$ exist and satisfy $F(s,t)=\Theta (s+t)$. In consequence, the problem of Alon and Stiebitz reduces to the case $s=t=2$. Moreover, the numbers $F(s,t)$ with $s,t \ge 2$ either all exist and grow linearly, or all of them do not exist.
We show that dualising transfer maps in Hochschild cohomology of symmetric algebras over complete discrete valuations rings commutes with Tate duality. This is analogous to a similar result for Tate cohomology of symmetric algebras over fields. We interpret both results in the broader context of Calabi–Yau triangulated categories.
This paper studies twisted signature invariants and twisted linking forms, with a view toward obstructions to knot concordance. Given a knot K and a representation $\rho $ of the knot group, we define a twisted signature function $\sigma _{K,\rho } \colon S^1 \to \mathbb {Z}$. This invariant satisfies many of the same algebraic properties as the classical Levine-Tristram signature $\sigma _K$. When the representation is abelian, $\sigma _{K,\rho }$ recovers $\sigma _K$, while for appropriate metabelian representations, $\sigma _{K,\rho }$ is closely related to the Casson-Gordon invariants. Additionally, we prove satellite formulas for $\sigma _{K,\rho }$ and for twisted Blanchfield forms.