To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper is focused on spreading dynamics for a discrete Nicholson's blowflies model with time convolution kernel. This problem arises in the invasive activity of blowflies scattered in discrete spatial environment and has distributed maturated age. We found that for a general convolution kernel, the model can exhibit travelling wave phenomena in a discrete spatial habitat. In particular, we determine the minimal wave speed of travelling waves by deriving the non-existence of travelling waves, and we demonstrate that the minimal wave speed can determine the long time behaviour of solutions with compact initial function. Moreover, we prove that all travelling waves are strictly increasing, which implies that the waveforms remain monotone in the propagation process. Some numerical simulations are also presented to confirm the analytical results.
We carry out the extended symmetry analysis of an ultraparabolic Fokker–Planck equation with three independent variables, which is also called the Kolmogorov equation and is singled out within the class of such Fokker–Planck equations by its remarkable symmetry properties. In particular, its essential Lie invariance algebra is eight-dimensional, which is the maximum dimension within the above class. We compute the complete point symmetry pseudogroup of the Fokker–Planck equation using the direct method, analyse its structure and single out its essential subgroup. After listing inequivalent one- and two-dimensional subalgebras of the essential and maximal Lie invariance algebras of this equation, we exhaustively classify its Lie reductions, carry out its peculiar generalised reductions and relate the latter reductions to generating solutions with iterative action of Lie-symmetry operators. As a result, we construct wide families of exact solutions of the Fokker–Planck equation, in particular, those parameterised by an arbitrary finite number of arbitrary solutions of the (1+1)-dimensional linear heat equation. We also establish the point similarity of the Fokker–Planck equation to the (1+2)-dimensional Kramers equations whose essential Lie invariance algebras are eight-dimensional, which allows us to find wide families of exact solutions of these Kramers equations in an easy way.
We consider a class of nonlinear higher-order evolution inequalities posed in $(0,\infty)\times B_1\backslash\{0\}$, subject to inhomogeneous Dirichlet-type boundary conditions, where B1 is the unit ball in $\mathbb{R}^N$. The considered class involves differential operators of the form
where $\mu_1\in \mathbb{R}$ and $\mu_2\geq -\left(\frac{\mu_1-N+2}{2}\right)^2$. Optimal criteria for the nonexistence of weak solutions are established. Our study yields naturally optimal nonexistence results for the corresponding class of elliptic inequalities. Notice that no restriction on the sign of solutions is imposed.
A chordal graph is a graph with no induced cycles of length at least $4$. Let $f(n,m)$ be the maximal integer such that every graph with $n$ vertices and $m$ edges has a chordal subgraph with at least $f(n,m)$ edges. In 1985 Erdős and Laskar posed the problem of estimating $f(n,m)$. In the late 1980s, Erdős, Gyárfás, Ordman and Zalcstein determined the value of $f(n,n^2/4+1)$ and made a conjecture on the value of $f(n,n^2/3+1)$. In this paper we prove this conjecture and answer the question of Erdős and Laskar, determining $f(n,m)$ asymptotically for all $m$ and exactly for $m \leq n^2/3+1$.
Let $\sigma $ be a stability condition on the bounded derived category $D^b({\mathop{\mathrm {Coh}}\nolimits } W)$ of a Calabi–Yau threefold W and $\mathcal {M}$ a moduli stack parametrizing $\sigma $-semistable objects of fixed topological type. We define generalized Donaldson–Thomas invariants which act as virtual counts of objects in $\mathcal {M}$, fully generalizing the approach introduced by Kiem, Li and the author in the case of semistable sheaves. We construct an associated proper Deligne–Mumford stack $\widetilde {\mathcal {M}}^{\mathbb {C}^{\ast }}$, called the $\mathbb {C}^{\ast }$-rigidified intrinsic stabilizer reduction of $\mathcal {M}$, with an induced semiperfect obstruction theory of virtual dimension zero, and define the generalized Donaldson–Thomas invariant via Kirwan blowups to be the degree of the associated virtual cycle $[\widetilde {\mathcal {M}}]^{\mathrm {vir}} \in A_0(\widetilde {\mathcal {M}})$. This stays invariant under deformations of the complex structure of W. Applications include Bridgeland stability, polynomial stability, Gieseker and slope stability.
We construct an action of the affine Hecke category on the principal block $\mathrm {Rep}_0(G_1T)$ of $G_1T$-modules where G is a connected reductive group over an algebraically closed field of characteristic $p> 0$, T a maximal torus of G and $G_1$ the Frobenius kernel of G. To define it, we define a new category with a Hecke action which is equivalent to the combinatorial category defined by Andersen-Jantzen-Soergel.
The Hopf–Galois structures admitted by a Galois extension of fields $ L/K $ with Galois group G correspond bijectively with certain subgroups of $ \mathrm{Perm}(G) $. We use a natural partition of the set of such subgroups to obtain a method for partitioning the set of corresponding Hopf–Galois structures, which we term ρ-conjugation. We study properties of this construction, with particular emphasis on the Hopf–Galois analogue of the Galois correspondence, the connection with skew left braces, and applications to questions of integral module structure in extensions of local or global fields. In particular, we show that the number of distinct ρ-conjugates of a given Hopf–Galois structure is determined by the corresponding skew left brace, and that if $ H, H^{\prime} $ are Hopf algebras giving ρ-conjugate Hopf–Galois structures on a Galois extension of local or global fields $ L/K $ then an ambiguous ideal $ \mathfrak{B} $ of L is free over its associated order in H if and only if it is free over its associated order in Hʹ. We exhibit a variety of examples arising from interactions with existing constructions in the literature.
The main purpose of this paper is to capture the asymptotic behaviour for solutions to a class of nonlinear elliptic and parabolic equations with the anisotropic weights consisting of two power-type weights of different dimensions near the degenerate or singular point, especially covering the weighted p-Laplace equations and weighted fast diffusion equations. As a consequence, we also establish the local Hölder estimates for their solutions in the presence of single power-type weights.
We note that Gabber's rigidity theorem for the algebraic K-theory of henselian pairs also holds true for hermitian K-theory with respect to arbitrary form parameters.
We study the local and global existence and uniqueness of mild solution for a general class of abstract differential equations with state-dependent argument. In the last section, some examples on partial differential equations with state-dependent argument are presented.
The total mean curvature functional for submanifolds into the Riemannian product space $\mathbb{S}^n\times\mathbb{R}$ is considered and its first variational formula is presented. Later on, two second-order differential operators are defined and a nice integral inequality relating both of them is proved. Finally, we prove our main result: an integral inequality for closed stationary $\mathcal{H}$-surfaces in $\mathbb{S}^n\times\mathbb{R}$, characterizing the cases where the equality is attained.
For a fixed infinite graph $H$, we study the largest density of a monochromatic subgraph isomorphic to $H$ that can be found in every two-colouring of the edges of $K_{\mathbb{N}}$. This is called the Ramsey upper density of $H$ and was introduced by Erdős and Galvin in a restricted setting, and by DeBiasio and McKenney in general. Recently [4], the Ramsey upper density of the infinite path was determined. Here, we find the value of this density for all locally finite graphs $H$ up to a factor of 2, answering a question of DeBiasio and McKenney. We also find the exact density for a wide class of bipartite graphs, including all locally finite forests. Our approach relates this problem to the solution of an optimisation problem for continuous functions. We show that, under certain conditions, the density depends only on the chromatic number of $H$, the number of components of $H$ and the expansion ratio $|N(I)|/|I|$ of the independent sets of $H$.
We introduce the quantum isomeric supercategory and the quantum affine isomeric supercategory. These diagrammatically defined supercategories, which can be viewed as isomeric analogues of the HOMFLYPT skein category and its affinisation, provide powerful categorical tools for studying the representation theory of the quantum isomeric superalgebras (commonly known as quantum queer superalgebras).
The notion of cross-intersecting set pair system of size $m$, $ (\{A_i\}_{i=1}^m, \{B_i\}_{i=1}^m )$ with $A_i\cap B_i=\emptyset$ and $A_i\cap B_j\ne \emptyset$, was introduced by Bollobás and it became an important tool of extremal combinatorics. His classical result states that $m\le\binom{a+b}{a}$ if $|A_i|\le a$ and $|B_i|\le b$ for each $i$. Our central problem is to see how this bound changes with the additional condition $|A_i\cap B_j|=1$ for $i\ne j$. Such a system is called $1$-cross-intersecting. We show that these systems are related to perfect graphs, clique partitions of graphs, and finite geometries. We prove that their maximum size is
at least $5^{n/2}$ for $n$ even, $a=b=n$,
equal to $\bigl (\lfloor \frac{n}{2}\rfloor +1\bigr )\bigl (\lceil \frac{n}{2}\rceil +1\bigr )$ if $a=2$ and $b=n\ge 4$,
at most $|\cup _{i=1}^m A_i|$,
asymptotically $n^2$ if $\{A_i\}$ is a linear hypergraph ($|A_i\cap A_j|\le 1$ for $i\ne j$),
asymptotically ${1\over 2}n^2$ if $\{A_i\}$ and $\{B_i\}$ are both linear hypergraphs.