To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
While on the one hand, chaotic dynamical systems can be predicted for all time given exact knowledge of an initial state, they are also in many cases rapidly mixing, meaning that smooth probabilistic information (quantified by measures) on the system’s state has negligible value for predicting the long-term future. However, an understanding of the long-term predictive value of intermediate kinds of probabilistic information is necessary in various physical problems, and largely remains lacking. Of particular interest in data assimilation and linear response theory are the conditional measures of the Sinai–Ruelle–Bowen (SRB) measure on zero sets of general smooth functions of the phase space. In this paper we give rigorous and numerical evidence that such measures generically converge back under the dynamics to the full SRB measures, exponentially quickly. We call this property conditional mixing. While conditional mixing typically cannot be proven from standard transfer operator theory, we will prove that conditional mixing holds in a class of generalized baker’s maps, and demonstrate it numerically in some non-Markovian piecewise hyperbolic maps. Conditional mixing provides a natural limit on the effectiveness of long-term forecasting of chaotic systems via partial observations, and appears key to proving the existence of linear response outside the setting of smooth uniform hyperbolicity.
For integers a and $b\geq 2$, let $T_a$ and $T_b$ be multiplication by a and b on $\mathbb {T}=\mathbb {R}/\mathbb {Z}$. The action on $\mathbb {T}$ by $T_a$ and $T_b$ is called $\times a,\times b$ action and it is known that, if a and b are multiplicatively independent, then the only $\times a,\times b$ invariant and ergodic measure with positive entropy of $T_a$ or $T_b$ is the Lebesgue measure. However, it is not known whether there exists a non-trivial $\times a,\times b$ invariant and ergodic measure. In this paper, we study the empirical measures of $x\in \mathbb {T}$ with respect to the $\times a,\times b$ action and show that the set of x such that the empirical measures of x do not converge to any measure has Hausdorff dimension one and the set of x such that the empirical measures can approach a non-trivial $\times a,\times b$ invariant measure has Hausdorff dimension zero. Furthermore, we obtain some equidistribution result about the $\times a,\times b$ orbit of x in the complement of a set of Hausdorff dimension zero.
We consider Toeplitz determinants whose symbol has: (i) a one-cut regular potential $V$, (ii) Fisher–Hartwig singularities and (iii) a smooth function in the background. The potential $V$ is associated with an equilibrium measure that is assumed to be supported on the whole unit circle. For constant potentials $V$, the equilibrium measure is the uniform measure on the unit circle and our formulas reduce to well-known results for Toeplitz determinants with Fisher–Hartwig singularities. For non-constant $V$, our results appear to be new even in the case of no Fisher–Hartwig singularities. As applications of our results, we derive various statistical properties of a determinantal point process which generalizes the circular unitary ensemble.
Three typical elastic problems, including beam bending, truss extension and compression, and two-rings collision are simulated with smoothed particle hydrodynamics (SPH) using Lagrangian and Eulerian algorithms. A contact-force model for elastic collisions and equation of state for pressure arising in colliding elastic bodies are also analytically derived. Numerical validations, on using the corresponding theoretical models, are carried out for the beam bending, truss extension and compression simulations. Numerical instabilities caused by largely deformed particle configurations in finite/large elastic deformations are analysed. The numerical experiments show that the algorithms handle small deformations well, but only the Lagrangian algorithm can handle large elastic deformations. The numerical results obtained from the Lagrangian algorithm also show a good agreement with the theoretical values.
We derive an upper bound on the density of Jones polynomials of knots modulo a prime number $p$, within a sufficiently large degree range: $4/p^7$. As an application, we classify knot Jones polynomials modulo two of span up to eight.
A delayed reaction-diffusion system with free boundaries is investigated in this paper to understand how the bacteria spread spatially to larger area from the initial infected habitat. Under the assumptions that the nonlinearities are of monostable type and the initial values satisfy some compatible condition, we show that the free boundary problem is well-posed and discuss the long-time behaviour of solution (including spreading and vanishing) in terms of the spatial-temporal risk index. Furthermore, to determine the spreading speed of free boundaries when spreading occurs, we first study the distribution of roots of a transcendental equation containing a polynomial of degree four and then establish the existence and uniqueness of monotone solution to a delay-induced nonlocal semi-wave problem by employing the approximation method, lower-upper solutions technique and Schauder fixed point theorem. It is shown that time delays slow down the spreading of bacteria.
This paper is concerned with singular matrix difference equations of mixed order. The existence and uniqueness of initial value problems for these equations are derived, and then the classification of them is obtained with a similar classical Weyl's method by selecting a suitable quasi-difference. An equivalent characterization of this classification is given in terms of the number of linearly independent square summable solutions of the equation. The influence of off-diagonal coefficients on the classification is illustrated by two examples. In particular, two limit point criteria are established in terms of coefficients of the equation.
This paper studies the structure and preservational properties of lower bounded HNN extensions of inverse semigroups, as introduced by Jajcayová. We show that if $S^* = [ S;\; U_1,U_2;\; \phi ]$ is a lower bounded HNN extension then the maximal subgroups of $S^*$ may be described using Bass-Serre theory, as the fundamental groups of certain graphs of groups defined from the $\mathcal{D}$-classes of $S$, $U_1$ and $U_2$. We then obtain a number of results concerning when inverse semigroup properties are preserved under the HNN extension construction. The properties considered are completely semisimpleness, having finite $\mathcal{R}$-classes, residual finiteness, being $E$-unitary, and $0$-$E$-unitary. Examples are given, such as an HNN extension of a polycylic inverse monoid.
We provide an analytic solution of the Rössler equations based on the asymptotic limit $c\to \infty $ and we show in this limit that the solution takes the form of multiple pulses, similar to “burst” firing of neurons. We are able to derive an approximate Poincaré map for the solutions, which compares reasonably with a numerically derived map.
Being able to characterise objects at low frequencies, but in situations where the modelling error in the eddy current approximation of the Maxwell system becomes large, is important for improving current metal detection technologies. Importantly, the modelling error becomes large as the frequency increases, but the accuracy of the eddy current model also depends on the object topology and on its materials, with the error being much larger for certain geometries compared to others of the same size and materials. Additionally, the eddy current model breaks down at much smaller frequencies for highly magnetic conducting materials compared to non-permeable objects (with similar conductivities, sizes and shapes) and, hence, characterising small magnetic objects made of permeable materials using the eddy current at typical frequencies of operation for a metal detector is not always possible. To address this, we derive a new asymptotic expansion for permeable highly conducting objects that is valid for small objects and holds not only for frequencies where the eddy current model is valid but also for situations where the eddy current modelling error becomes large and applying the eddy approximation would be invalid. The leading-order term we derive leads to new forms of object characterisations in terms of polarizability tensor object descriptions where the coefficients can be obtained from solving vectorial transmission problems. We expect these new characterisations to be important when considering objects at greater stand-off distance from the coils, which is important for safety critical applications, such as the identification of landmines, unexploded ordnance and concealed weapons. We also expect our results to be important when characterising artefacts of archaeological and forensic significance at greater depths than the eddy current model allows and to have further applications parking sensors and improving the detection of hidden, out-of-sight, metallic objects.
A porous material that has been contaminated with a hazardous chemical agent is typically decontaminated by applying a cleanser solution to the surface and allowing the cleanser to react into the porous material, neutralising the agent. The agent and cleanser are often immiscible fluids and so, if the porous material is initially saturated with agent, a reaction front develops with the decontamination reaction occurring at this interface between the fluids. We investigate the effect of different initial agent configurations within the pore space on the decontamination process. Specifically, we compare the decontamination of a material initially saturated by the agent with the situation when, initially, the agent only coats the walls of the pores (referred to as the ‘agent-on-walls’ case). In previous work (Luckins et al., European Journal of Applied Mathematics, 31(5):782–805, 2020), we derived homogenised models for both of these decontamination scenarios, and in this paper we explore the solutions of these two models. We find that, for an identical initial volume of agent, the decontamination time is generally much faster for the agent-on-walls case compared with the initially saturated case, since the surface area on which the reaction can occur is greater. However for sufficiently deep spills of contaminant, or sufficiently slow reaction rates, decontamination in the agent-on-walls scenario can be slower. We also show that, in the limit of a dilute cleanser with a deep initial agent spill, the agent-on-walls model exhibits behaviour akin to a Stefan problem of the same form as that arising in the initially saturated model. The decontamination time is shown to decrease with both the applied cleanser concentration and the rate of the chemical reaction. However, increasing the cleanser concentration is also shown to result in lower decontamination efficiency, with an increase in the amount of cleanser chemical that is wasted.
The aim of this note is twofold. First, we prove an abstract version of the Calderón transference principle for inequalities of admissible type in the general commutative multilinear and multiparameter setting. Such an operation does not increase the constants in the transferred inequalities. Second, we use the last information to study a certain dichotomy arising in problems of finding the best constants in the weak type $(1,1)$ and strong type $(p,p)$ inequalities for one-parameter ergodic maximal operators.
We study stationary measures for iterated function systems (considered as random dynamical systems) consisting of two piecewise affine interval homeomorphisms, called Alsedà–Misiurewicz (AM) systems. We prove that for an open set of parameters, the unique non-atomic stationary measure for an AM system has Hausdorff dimension strictly smaller than $1$. In particular, we obtain singularity of these measures, answering partially a question of Alsedà and Misiurewicz [Random interval homeomorphisms. Publ. Mat.58(suppl.) (2014), 15–36].
Reflexive homology is the homology theory associated to the reflexive crossed simplicial group; one of the fundamental crossed simplicial groups. It is the most general way to extend Hochschild homology to detect an order-reversing involution. In this paper we study the relationship between reflexive homology and the $C_2$-equivariant homology of free loop spaces. We define reflexive homology in terms of functor homology. We give a bicomplex for computing reflexive homology together with some calculations, including the reflexive homology of a tensor algebra. We prove that the reflexive homology of a group algebra is isomorphic to the homology of the $C_2$-equivariant Borel construction on the free loop space of the classifying space. We give a direct sum decomposition of the reflexive homology of a group algebra indexed by conjugacy classes of group elements, where the summands are defined in terms of a reflexive analogue of group homology. We define a hyperhomology version of reflexive homology and use it to study the $C_2$-equivariant homology of certain free loop and free loop-suspension spaces. We show that reflexive homology satisfies Morita invariance. We prove that under nice conditions the involutive Hochschild homology studied by Braun and by Fernàndez-València and Giansiracusa coincides with reflexive homology.
We prove a generalization of Krieger’s embedding theorem, in the spirit of zero-error information theory. Specifically, given a mixing shift of finite type X, a mixing sofic shift Y, and a surjective sliding block code $\pi : X \to Y$, we give necessary and sufficient conditions for a subshift Z of topological entropy strictly lower than that of Y to admit an embedding $\psi : Z \to X$ such that $\pi \circ \psi $ is injective.
Smith theory says that the fixed point set of a semi-free action of a group $G$ on a contractible space is ${\mathbb {Z}}_p$-acyclic for any prime factor $p$ of the order of $G$. Jones proved the converse of Smith theory for the case $G$ is a cyclic group acting semi-freely on contractible, finite CW-complexes. We extend the theory to semi-free group actions on finite CW-complexes of given homotopy types, in various settings. In particular, the converse of Smith theory holds if and only if a certain $K$-theoretical obstruction vanishes. We also give some examples that show the geometrical effects of different types of $K$-theoretical obstructions.