To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The aim of this note is twofold. First, we prove an abstract version of the Calderón transference principle for inequalities of admissible type in the general commutative multilinear and multiparameter setting. Such an operation does not increase the constants in the transferred inequalities. Second, we use the last information to study a certain dichotomy arising in problems of finding the best constants in the weak type $(1,1)$ and strong type $(p,p)$ inequalities for one-parameter ergodic maximal operators.
We study stationary measures for iterated function systems (considered as random dynamical systems) consisting of two piecewise affine interval homeomorphisms, called Alsedà–Misiurewicz (AM) systems. We prove that for an open set of parameters, the unique non-atomic stationary measure for an AM system has Hausdorff dimension strictly smaller than $1$. In particular, we obtain singularity of these measures, answering partially a question of Alsedà and Misiurewicz [Random interval homeomorphisms. Publ. Mat.58(suppl.) (2014), 15–36].
Reflexive homology is the homology theory associated to the reflexive crossed simplicial group; one of the fundamental crossed simplicial groups. It is the most general way to extend Hochschild homology to detect an order-reversing involution. In this paper we study the relationship between reflexive homology and the $C_2$-equivariant homology of free loop spaces. We define reflexive homology in terms of functor homology. We give a bicomplex for computing reflexive homology together with some calculations, including the reflexive homology of a tensor algebra. We prove that the reflexive homology of a group algebra is isomorphic to the homology of the $C_2$-equivariant Borel construction on the free loop space of the classifying space. We give a direct sum decomposition of the reflexive homology of a group algebra indexed by conjugacy classes of group elements, where the summands are defined in terms of a reflexive analogue of group homology. We define a hyperhomology version of reflexive homology and use it to study the $C_2$-equivariant homology of certain free loop and free loop-suspension spaces. We show that reflexive homology satisfies Morita invariance. We prove that under nice conditions the involutive Hochschild homology studied by Braun and by Fernàndez-València and Giansiracusa coincides with reflexive homology.
We prove a generalization of Krieger’s embedding theorem, in the spirit of zero-error information theory. Specifically, given a mixing shift of finite type X, a mixing sofic shift Y, and a surjective sliding block code $\pi : X \to Y$, we give necessary and sufficient conditions for a subshift Z of topological entropy strictly lower than that of Y to admit an embedding $\psi : Z \to X$ such that $\pi \circ \psi $ is injective.
Smith theory says that the fixed point set of a semi-free action of a group $G$ on a contractible space is ${\mathbb {Z}}_p$-acyclic for any prime factor $p$ of the order of $G$. Jones proved the converse of Smith theory for the case $G$ is a cyclic group acting semi-freely on contractible, finite CW-complexes. We extend the theory to semi-free group actions on finite CW-complexes of given homotopy types, in various settings. In particular, the converse of Smith theory holds if and only if a certain $K$-theoretical obstruction vanishes. We also give some examples that show the geometrical effects of different types of $K$-theoretical obstructions.
We prove general Dwork-type congruences for constant terms attached to tuples of Laurent polynomials. We apply this result to establishing arithmetic and p-adic analytic properties of functions originating from polynomial solutions modulo $p^s$ of hypergeometric and Knizhnik–Zamolodchikov (KZ) equations, solutions which come as coefficients of master polynomials and whose coefficients are integers. As an application, we show that the simplest example of a p-adic KZ connection has an invariant line subbundle while its complex analog has no nontrivial subbundles due to the irreducibility of its monodromy representation.
Mathematical modelling has been used to support the response to the COVID-19 pandemic in countries around the world including Australia and New Zealand. Both these countries have followed similar pandemic response strategies, using a combination of strict border measures and community interventions to minimize infection rates until high vaccine coverage was achieved. This required a different set of modelling tools to those used in countries that experienced much higher levels of prevalence throughout the pandemic.
In this article, we provide an overview of some of the mathematical modelling and data analytics work that has helped to inform the policy response to the pandemic in Australia and New Zealand. This is a reflection on our experiences working at the modelling–policy interface and the impact this has had on the pandemic response. We outline the various types of model outputs, from short-term forecasts to longer-term scenario models, that have been used in different contexts. We discuss issues relating to communication between mathematical modellers and stakeholders such as health officials and policymakers. We conclude with some future challenges and opportunities in this area.
For a finitely dominated Poincaré duality space $M$, we show how the first author's total obstruction $\mu _M$ to the existence of a Poincaré embedding of the diagonal map $M \to M \times M$ in [17] relates to the Reidemeister trace of the identity map of $M$. We then apply this relationship to show that $\mu _M$ vanishes when suitable conditions on the fundamental group of $M$ are satisfied.
Let $R$ be a strongly $\mathbb {Z}^2$-graded ring, and let $C$ be a bounded chain complex of finitely generated free $R$-modules. The complex $C$ is $R_{(0,0)}$-finitely dominated, or of type $FP$ over $R_{(0,0)}$, if it is chain homotopy equivalent to a bounded complex of finitely generated projective $R_{(0,0)}$-modules. We show that this happens if and only if $C$ becomes acyclic after taking tensor product with a certain eight rings of formal power series, the graded analogues of classical Novikov rings. This extends results of Ranicki, Quinn and the first author on Laurent polynomial rings in one and two indeterminates.
We compare two partitions of real bitangents to smooth plane quartics into sets of 4: one coming from the closures of connected components of the avoidance locus and another coming from tropical geometry. When both are defined, we use the Tarski principle for real closed fields in combination with the topology of real plane quartics and the tropical geometry of bitangents and theta characteristics to show that they coincide.
We investigate symmetry of the silting quiver of a given algebra which is induced by an anti-automorphism of the algebra. In particular, one shows that if there is a primitive idempotent fixed by the anti-automorphism, then the 2-silting quiver ($=$ the support $\tau$-tilting quiver) has a bisection. Consequently, in that case, we obtain that the cardinality of the 2-silting quiver is an even number (if it is finite).
A. Mark and J. Paupert [Presentations for cusped arithmetic hyperbolic lattices, 2018, arXiv:1709.06691.] presented a method to compute a presentation for any cusped complex hyperbolic lattice. In this note, we will use their method to give a presentation for the Eisenstein-Picard modular group in three complex dimensions.
In this work, we study the Humbert-Edge curves of type 5, defined as a complete intersection of four diagonal quadrics in ${\mathbb{P}}^5$. We characterize them using Kummer surfaces, and using the geometry of these surfaces, we construct some vanishing thetanulls on such curves. In addition, we describe an argument to give an isomorphism between the moduli space of Humbert-Edge curves of type 5 and the moduli space of hyperelliptic curves of genus 2, and we show how this argument can be generalized to state an isomorphism between the moduli space of hyperelliptic curves of genus $g=\frac{n-1}{2}$ and the moduli space of Humbert-Edge curves of type $n\geq 5$ where $n$ is an odd number.
A well-known theorem of Philip Hall states that if a group G has a nilpotent normal subgroup N such that $G/N'$ is nilpotent, then G itself is nilpotent. We say that a group class 𝔛 is a Hall class if it contains every group G admitting a nilpotent normal subgroup N such that $G/N'$ belongs to 𝔛. Hall classes have been considered by several authors, such as Plotkin [‘Some properties of automorphisms of nilpotent groups’, Soviet Math. Dokl.2 (1961), 471–474] and Robinson [‘A property of the lower central series of a group’, Math. Z.107 (1968), 225–231]. A further detailed study of Hall classes is performed by us in another paper [‘Hall classes of groups’, to appear] and we also investigate the behaviour of the class of finite-by-𝔜 groups for a given Hall class 𝔜 [‘Hall classes in linear groups’, to appear]. The aim of this paper is to prove that for most natural choices of the Hall class 𝔜, also the classes $(\mathbf{L}\mathfrak{F})\mathfrak{Y}$ and 𝔅𝔜 are Hall classes, where L𝔉 is the class of locally finite groups and 𝔅 is the class of locally finite groups of finite exponent.
Given a dynamical system, we prove that the shortest distance between two n-orbits scales like n to a power even when the system has slow mixing properties, thus building and improving on results of Barros, Liao and the first author [On the shortest distance between orbits and the longest common substring problem. Adv. Math.344 (2019), 311–339]. We also extend these results to flows. Finally, we give an example for which the shortest distance between two orbits has no scaling limit.
then $C_{\varphi }$ is in the Schatten $p$-class of the Hardy space $H^2$.
(2) There exists a holomorphic self-map $\varphi$ (which is, of course, not of bounded valence) such that the inequality (0.1) holds and $C_{\varphi }: H^2\to H^2$ does not belong to the Schatten $p$-class.
Six patents were secured by E. H. Lanier from 1930 to 1933 for aeroplane designs that were intended to be exceptionally stable. A feature of five of these was a flow-induced “vacuum chamber” which was thought to provide superior stability and increased lift compared to typical wing designs. Initially, this chamber was in the fuselage, but later designs placed it in the wing by replacing a section of the upper skin of the wing with a series of angled slats. We report upon an investigation of the Lanier wing design using inviscid aerodynamic theory and viscous numerical simulations. This took place at the 2005 Australia–New Zealand Mathematics-in-Industry Study Group. The evidence from this investigation does not support the claims but, rather, suggests that any improvement in lift and/or stability seen in the few prototypes that were built was, most probably, due to thicker airfoils than were typical at the time.
We set up Symington’s theory of almost toric fibrations, including a discussion of the three basic operations (nodal trades, nodal slides, and change of branch cut/mutation). We prove Symington’s fundamental theorems that these operations have no effect on the symplectomorphism type of the ambient manifold. We give a range of examples including the Markov–tree of mutations of the standard almost toric fibration on the complex projective plane.