We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Classical finite association schemes lead to finite-dimensional algebras which are generated by finitely many stochastic matrices. Moreover, there exist associated finite hypergroups. The notion of classical discrete association schemes can be easily extended to the possibly infinite case. Moreover, this notion can be relaxed slightly by using suitably deformed families of stochastic matrices by skipping the integrality conditions. This leads to a larger class of examples which are again associated with discrete hypergroups. In this paper we propose a topological generalization of association schemes by using a locally compact basis space $X$ and a family of Markov-kernels on $X$ indexed by some locally compact space $D$ where the supports of the associated probability measures satisfy some partition property. These objects, called continuous association schemes, will be related to hypergroup structures on $D$. We study some basic results for this notion and present several classes of examples. It turns out that, for a given commutative hypergroup, the existence of a related continuous association scheme implies that the hypergroup has many features of a double coset hypergroup. We, in particular, show that commutative hypergroups, which are associated with commutative continuous association schemes, carry dual positive product formulas for the characters. On the other hand, we prove some rigidity results in particular in the compact case which say that for given spaces $X,D$ there are only a few continuous association schemes.
We consider abstract Sobolev spaces of Bessel-type associated with an operator. In this work, we pursue the study of algebra properties of such functional spaces through the corresponding semigroup. As a follow-up to our previous work, we show that by making use of the property of a ‘carré du champ’ identity, this algebra property holds in a wider range than previously shown.
We extend Følner’s amenability criterion to the realm of general topological groups. Building on this, we show that a topological group $G$ is amenable if and only if its left-translation action can be approximated in a uniform manner by amenable actions on the set $G$. As applications we obtain a topological version of Whyte’s geometric solution to the von Neumann problem and give an affirmative answer to a question posed by Rosendal.
We prove Hardy-type inequalities for a fractional Dunkl–Hermite operator, which incidentally gives Hardy inequalities for the fractional harmonic oscillator as well. The idea is to use h-harmonic expansions to reduce the problem in the Dunkl–Hermite context to the Laguerre setting. Then, we push forward a technique based on a non-local ground representation, initially developed by Frank et al. [‘Hardy–Lieb–Thirring inequalities for fractional Schrödinger operators, J. Amer. Math. Soc.21 (2008), 925–950’] in the Euclidean setting, to obtain a Hardy inequality for the fractional-type Laguerre operator. The above-mentioned method is shown to be adaptable to an abstract setting, whenever there is a ‘good’ spectral theorem and an integral representation for the fractional operators involved.
It is shown that various definitions of $\unicode[STIX]{x1D711}$-Connes amenability and $\unicode[STIX]{x1D711}$-contractibility are equivalent to older and simpler concepts.
The century-old extremal problem, solved by Carathéodory and Fejér, concerns a non-negative trigonometric polynomial $T(t) = a_0 + \sum\nolimits_{k = 1}^n {a_k} \cos (2\pi kt) + b_k\sin (2\pi kt){\ge}0$, normalized by a0=1, where the quantity to be maximized is the coefficient a1 of cos (2π t). Carathéodory and Fejér found that for any given degree n, the maximum is 2 cos(π/n+2). In the complex exponential form, the coefficient sequence (ck) ⊂ ℂ will be supported in [−n, n] and normalized by c0=1. Reformulating, non-negativity of T translates to positive definiteness of the sequence (ck), and the extremal problem becomes a maximization problem for the value at 1 of a normalized positive definite function c: ℤ → ℂ, supported in [−n, n]. Boas and Kac, Arestov, Berdysheva and Berens, Kolountzakis and Révész and, recently, Krenedits and Révész investigated the problem in increasing generality, reaching analogous results for all locally compact abelian groups. We prove an extension to all the known results in not necessarily commutative locally compact groups.
We give a succinct proof of a duality theorem obtained by Révész [‘Some trigonometric extremal problems and duality’, J. Aust. Math. Soc. Ser. A 50 (1991), 384–390] which concerns extremal quantities related to trigonometric polynomials. The key tool of our new proof is an intersection formula on dual cones in real Banach spaces. We show another application of this intersection formula which is related to integral estimates of nonnegative positive-definite functions.
Uniformization transforms a pseudo-Poisson process with unequal intensities (leaving rates) into one with uniform intensity. Self-transitions is the price to pay. Two intensities arise when one considers an absorbing barrier of a Markov process as a body in its own right: a pair of Markov processes intertwined by an extended Chapman–Kolmogorov equation naturally arises. We show that Sauer's two-state space empathy theory handles such intertwined processes. The price of self-transitions is also avoided.
Let $G$ be a locally compact amenable group and $A(G)$ and $B(G)$ be the Fourier and the Fourier–Stieltjes algebras of $G,$ respectively. For a power bounded element $u$ of $B(G)$, let ${\mathcal{E}}_{u}:=\{g\in G:|u(g)|=1\}$. We prove some convergence theorems for iterates of multipliers in Fourier algebras.
(a) If $\Vert u\Vert _{B(G)}\leq 1$, then $\lim _{n\rightarrow \infty }\Vert u^{n}v\Vert _{A(G)}=\text{dist}(v,I_{{\mathcal{E}}_{u}})\text{ for }v\in A(G)$, where $I_{{\mathcal{E}}_{u}}=\{v\in A(G):v({\mathcal{E}}_{u})=\{0\}\}$.
(b) The sequence $\{u^{n}v\}_{n\in \mathbb{N}}$ converges for every $v\in A(G)$ if and only if ${\mathcal{E}}_{u}$ is clopen and $u({\mathcal{E}}_{u})=\{1\}.$
(c) If the sequence $\{u^{n}v\}_{n\in \mathbb{N}}$ converges weakly in $A(G)$ for some $v\in A(G)$, then it converges strongly.
where $f$ satisfies the condition $f(\sum _{\unicode[STIX]{x1D706}\in K}\unicode[STIX]{x1D706}x)\neq 0$ for all $x\in S$, $(S,+)$ is an abelian semigroup and $K$ is a subgroup of the automorphism group of $S$.
We investigate $L^{p}(\unicode[STIX]{x1D6FE})$–$L^{q}(\unicode[STIX]{x1D6FE})$ off-diagonal estimates for the Ornstein–Uhlenbeck semigroup $(e^{tL})_{t>0}$. For sufficiently large $t$ (quantified in terms of $p$ and $q$), these estimates hold in an unrestricted sense, while, for sufficiently small $t$, they fail when restricted to maximal admissible balls and sufficiently small annuli. Our counterexample uses Mehler kernel estimates.
Recently Houdayer and Isono have proved, among other things, that every biexact group $\unicode[STIX]{x1D6E4}$ has the property that for any non-singular strongly ergodic essentially free action $\unicode[STIX]{x1D6E4}\curvearrowright (X,\unicode[STIX]{x1D707})$ on a standard measure space, the group measure space von Neumann algebra $\unicode[STIX]{x1D6E4}\ltimes L^{\infty }(X)$ is full. In this paper, we prove the same property for a wider class of groups, notably including $\text{SL}(3,\mathbb{Z})$. We also prove that for any connected simple Lie group $G$ with finite center, any lattice $\unicode[STIX]{x1D6E4}\leqslant G$, and any closed non-amenable subgroup $H\leqslant G$, the non-singular action $\unicode[STIX]{x1D6E4}\curvearrowright G/H$ is strongly ergodic and the von Neumann factor $\unicode[STIX]{x1D6E4}\ltimes L^{\infty }(G/H)$ is full.
A locally compact group G is compact if and only if its convolution algebras contain non-zero (weakly) completely continuous elements. Dually, G is discrete if its function algebras contain non-zero completely continuous elements. We prove non-commutative versions of these results in the case of locally compact quantum groups.
We characterize dual spaces and compute hyperdimensions of irreducible representations for two classes of compact hypergroups namely conjugacy classes of compact groups and compact hypergroups constructed by joining compact and finite hypergroups. Also, studying the representation theory of finite hypergroups, we highlight some interesting differences and similarities between the representation theories of finite hypergroups and finite groups. Finally, we compute the Heisenberg inequality for compact hypergroups.
A set is shy or Haar null (in the sense of Christensen) if there exists a Borel set and a Borel probability measure μ on C[0, 1] such that and for all f ∈ C[0, 1]. The complement of a shy set is called a prevalent set. We say that a set is Haar ambivalent if it is neither shy nor prevalent.
The main goal of the paper is to answer the following question: what can we say about the topological properties of the level sets of the prevalent/non-shy many f ∈ C[0, 1]?
The classical Bruckner–Garg theorem characterizes the level sets of the generic (in the sense of Baire category) f ∈ C[0, 1] from the topological point of view. We prove that the functions f ∈ C[0, 1] for which the same characterization holds form a Haar ambivalent set.
In an earlier paper, Balka et al. proved that the functions f ∈ C[0, 1] for which positively many level sets with respect to the Lebesgue measure λ are singletons form a non-shy set in C[0, 1]. The above result yields that this set is actually Haar ambivalent. Now we prove that the functions f ∈ C[0, 1] for which positively many level sets with respect to the occupation measure λ ◦ f–1 are not perfect form a Haar ambivalent set in C[0, 1].
We show that for the prevalent f ∈ C[0, 1] for the generic y ∈ f([0, 1]) the level set f–1(y) is perfect. Finally, we answer a question of Darji and White by showing that the set of functions f ∈ C[0, 1] for which there exists a perfect set Pf ⊂ [0, 1] such that fʹ(x) = ∞ for all x ∈ Pf is Haar ambivalent.
This paper presents a structured study for abstract harmonic analysis of relative convolutions over canonical homogeneous spaces of semidirect product groups. Let $H,K$ be locally compact groups and $\unicode[STIX]{x1D703}:H\rightarrow \text{Aut}(K)$ be a continuous homomorphism. Let $G_{\unicode[STIX]{x1D703}}=H\ltimes _{\unicode[STIX]{x1D703}}K$ be the semidirect product of $H$ and $K$ with respect to $\unicode[STIX]{x1D703}$ and $G_{\unicode[STIX]{x1D703}}/H$ be the canonical homogeneous space (left coset space) of $G_{\unicode[STIX]{x1D703}}/H$. We present a unified approach to the harmonic analysis of relative convolutions over the canonical homogeneous space $G_{\unicode[STIX]{x1D703}}/H$.
We prove that all convolution products of pairs of continuous orbital measures in rank one, compact symmetric spaces are absolutely continuous and determine which convolution products are in $L^{2}$ (meaning that their density function is in $L^{2}$). We characterise the pairs whose convolution product is either absolutely continuous or in $L^{2}$ in terms of the dimensions of the corresponding double cosets. In particular, we prove that if $G/K$ is not $\text{SU}(2)/\text{SO}(2)$, then the convolution of any two regular orbital measures is in $L^{2}$, while in $\text{SU}(2)/\text{SO}(2)$ there are no pairs of orbital measures whose convolution product is in $L^{2}$.
This paper considers Banach algebras with properties 𝔸 or 𝔹, introduced recently by Alaminos et al. The class of Banach algebras satisfying either of these two properties is quite large; in particular, it includes C*-algebras and group algebras on locally compact groups. Our first main result states that a continuous orthogonally additive n-homogeneous polynomial on a commutative Banach algebra with property 𝔸 and having a bounded approximate identity is of a standard form. The other main results describe Banach algebras A with property 𝔹 and having a bounded approximate identity that admit non-zero continuous symmetric orthosymmetric n-linear maps from An into ℂ.
Let $G$ be a compact group. The aim of this note is to show that the only continuous *-homomorphism from $L^{1}(G)$ to $\ell ^{\infty }\text{-}\bigoplus _{[{\it\pi}]\in {\hat{G}}}{\mathcal{B}}_{2}({\mathcal{H}}_{{\it\pi}})$ that transforms a convolution product into a pointwise product is, essentially, a Fourier transform. A similar result is also deduced for maps from $L^{2}(G)$ to $\ell ^{2}\text{-}\bigoplus _{[{\it\pi}]\in {\hat{G}}}{\mathcal{B}}_{2}({\mathcal{H}}_{{\it\pi}})$.