We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let , let G and H belocally compact groups and let ω be a continuous homomorphism of G into H. We prove, if G is amenable, the existence of a linear contraction of the Banach algebra CVp(G) of the p-convolution operators on G into CVp(H) which extends the usual definition of the image of a bounded measure by ω. We also discuss the uniqueness of this linear contraction onto important subalgebras of CVp(G). Even if G and H are abelian, we obtain new results. Let Gd denote the group G provided with a discrete topology. As a corollary, we obtain, for every discrete measure, , for Gd amenable. For arbitrary G, we also obtain . These inequalities were already known for p=2 . The proofs presented in this paper avoid the use of the Hilbertian techniques which are not applicable to . Finally, for Gd amenable, we construct a natural map of CVp (G)into CVp (Gd) .
In the dual object of an infinite compact, connected group, every infinite Sidon set contains an infinite subset on which full interpolation can be performed using very small classes of measures (discrete measures on arbitrarily small sets or nonnegative discrete measures). In particular, the Figà-Talamanca–Rider subset of an infinite product of compact, connected, simple Lie groups has these kinds of interpolation. This substantially improves previous interpolation results.
We give a simplified proof of the complex inversion formula for semigroups and, more generally, solution families for scalar-type Volterra equations, including the stronger versions on unconditional martingale differences (UMD) spaces. Our approach is based on (elementary) Fourier analysis.
The concept of semi-bounded generalized hypergroups (SBG hypergroups) is developed. These hypergroups are more special than generalized hypergroups introduced by Obata and Wildberger and more general than discrete hypergroups or even discrete signed hypergroups. The convolution of measures and functions is studied. In the case of commutativity we define the dual objects and prove some basic theorems of Fourier analysis. Furthermore, we investigate the relationship between orthogonal polynomials and generalized hypergroups. We discuss the Jacobi polynomials as an example.
We show that generalized Gaussian estimates for selfadjoint semigroups (e-tA)t ∈ R+ on L2 imply Lp boundedness of Riesz means and other regularizations of the Schrödinger group (eitA)t ∈ R. This generalizes results restricted to semigroups with a heat kernel, which are due to Sjöstrand, Alexopoulos and more recently Carron, Coulhon and Ouhabaz. This generalization is crucial for elliptic operators A that are of higher order or have singular lower order terms since, in general, their semigroups fail to have a heat kernel.
In this article we study the Fourier space of a general hypergroup and its multipliers. The main result of this paper characterizes commutative hypergroups whose Fourier space forms a Banach algebra under pointwise product with an equivalent norm. Among those hypergroups whose Fourier space forms a Banach algebra, we identify a subclass for which the Gelfand spectrum of the Fourier algebra is equal to the underlying hypergroup. This subclass includes for instance, Jacobi hypergroups, Bessel-Kingman hypergroups.
In this paper we prove a new version of the Cowling-Price theorem for Fourier transforms on Rn. Using this we formulate and prove an uncertainty principle for operators. This leads to an analogue of the Cowling-Price theorem for nilpotent Lie groups. We also prove an exact analogue of the Cowling-Price theorem for the Heisenberg group.
A distribution on a Heisenberg type group of homogeneous dimension Q is a biradial kernel of type α if it coincides with a biradial function, homogeneous of degree α — Q, and smooth away from the identity. We prove that a distribution is a biradial kernel of type α, 0 < α < Q, if and only if its Gelfand transform, defined on the Heisenberg fan, extends to a smooth even function on the upper half plane, homogeneous of degree −α/2. A similar result holds for radial kernels on the Heisenberg group.
Let φ be a continuous nonzero homomorphism of the convolution algebra L1loc(R+) and also the unique extension of this homomorphism to Mloc(R+). We show that the map φis continuous in the weak* and strong opertor topologies on Mloc, considered as the dual space of Cc(R+) and as the multiplier algebra of L1loc. Analogous results are proved for homomorphism from L1 [0, a) to L1 [0, b). For each convolution algebra L1 (ω1), φ restricts to a continuous homomorphism from some L1 (ω1) to some L1 (ω2), and, for each sufficiently large L1 (ω2), φ restricts to a continuous homomorphism from some L1 (ω1) to L1 (ω2). We also determine which continuous homomorphisms between weighted convolution algebras extend to homomorphisms of L1loc. We also prove results on convergent nets, continuous semigroups, and bounded sets in Mloc that we need in our study of homomorphisms.
Let (X, ρ, μ)d, θ be a space of homogeneous type with d < 0 and θ ∈ (0, 1], b be a para-accretive function, ε ∈ (0, θ], ∣s∣ > ∈ and a0 ∈ (0, 1) be some constant depending on d, ∈ and s. The authors introduce the Besov space bBspq (X) with a0 > p ≧ ∞, and the Triebel-Lizorkin space bFspq (X) with a0 > p > ∞ and a0 > q ≧∞ by first establishing a Plancherel-Pôlya-type inequality. Moreover, the authors establish the frame and the Littlewood-Paley function characterizations of these spaces. Furthermore, the authors introduce the new Besov space b−1 Bs (X) and the Triebel-Lizorkin space b−1 Fspq (X). The relations among these spaces and the known Hardy-type spaces are presented. As applications, the authors also establish some real interpolation theorems, embedding theorems, T b theorems, and the lifting property by introducing some new Riesz operators of these spaces.
Let µ be Radon measure on Rd which may be non doubling. The only condition that µ must satisfy is the size condition µ(B(x, r)) ≤ Crn for some fixed n є (0, d). Recently, Tolsa introduced the spaces RBMO(µ) and Hatb1.∞ (µ), which, in some ways, play the role of the classical spaces BMO and H1 in case u is a doubling measure. In this paper, the author considers the local versions of the spaces RBMO(µ) and Hatb1.∞ (µ) in the sense of Goldberg and establishes the connections between the spaces RBMO(µ) and Hatb1.∞ (µ) with their local versions. An interpolation result of linear operators is also given.
Let F′ be the commutator subgroup of F and let Γ0 be the cyclic group generated by the first generator of F. We continue the study of the central sequences of the factor L(F′), and we prove that the abelian von Neumann algebra L(Γ0) is a strongly singular MASA in L(F). We also prove that the natural action of F on [0, 1] is ergodic and that its ratio set is {0} ∪ {2k; k ∞ Z}.
Let G be a compact abelian group and 1< p < ∞. It is known that the spectrum σ (Tψ) of a Fourier p–multiplier operator Tψ acting in Lp(G), may fail to coincide with its natural spectrum ψ(Г) if p ≠ 2; here Γ is the dual group to G and the bar denotes closure in C. Criteria are presented, based on geometric, topological and/or algebraic properties of the compact set σ(Tψ), which are sufficient to ensure that the equality σ(Tψ) = ψ(Г)holds.
Let a1… ad be a basis of the Lie algebra g of a connected Lie group G and let M be a Lie subgroup of,G. If dx is a non-zero positive quasi-invariant regular Borel measure on the homogeneous space X = G/M and S: X × G → C is a continuous cocycle, then under a rather weak condition on dx and S there exists in a natural way a (weakly*) continuous representation U of G in Lp (X;dx) for all p ε [1,].
Let Ai be the infinitesimal generator with respect to U and the direction ai, for all i ∈ { 1… d}. We consider n–th order strongly elliptic operators H = ΣcαAα with complex coefficients cα. We show that the semigroup S generated by the closure of H has a reduced heat kernel K and we derive upper bounds for k and all its derivatives.
In this paper, we give a generalization of Hardy's theorems for the Dunkl transform ℱD on ℝd. More precisely for all a > 0, b > 0 and p, q ∈ [1, + ∞], we determine the measurable functions f on ℝd such that where are the Lebesgue spaces associated with the Dunkl transform.
Pointwise bounds for characters of representations of the compact, connected, simple, exceptional Life groups are obtained. It is a classical result that if μ is a central, continuous measure on such a group, then μdimG is absolutely continuous. Our estimates on the size of characters allow us to prove that the exponent, dimension of G, can be replaced by approximately the rank of G. Similar results were obtained earlier for the classical, compact Lie groups.
We develop a theory of ergodicity for unbounded functions ø: J → X, where J is a subsemigroup of a locally compact abelian group G and X is a Banach space. It is assumed that ø is continuous and dominated by a weight w defined on G. In particular, we establish total ergodicity for the orbits of an (unbounded) strongly continuous representation T: G → L(X) whose dual representation has no unitary point spectrum. Under additional conditions stability of the orbits follows. To study spectra of functions, we use Beurling algebras L1w(G) and obtain new characterizations of their maximal primary ideals, when w is non-quasianalytic, and of their minimal primary ideals, when w has polynomial growth. It follows that, relative to certain translation invariant function classes , the reduced Beurling spectrum of ø is empty if and only if ø ∈ . For the zero class, this is Wiener's tauberian theorem.
We extend an uncertainty principle due to Cowling and Price to threadlike nilpotent Lie groups. This uncertainty principle is a generalization of a classical result due to Hardy. We are thus extending earlier work on Rn and Heisenberg groups.
It is well known that c0(Z) is amenable and so its global dimension is zero. In this paper we will investigate the cyclic and Hochschild cohomology of Banach algebra c0 (Z, ω-1) and its unitisation with coefficients in its dual space, where ω is a weight on Z which satisfies inf {ω(i)} = 0.Moreover we show that the weak homological bi-dimension of c0 (Z, ω-1) is infinity.