We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For a locally compact group $G$ with left Haar measure and a Young function ${\rm\Phi}$, we define and study the weighted Orlicz algebra $L_{w}^{{\rm\Phi}}(G)$ with respect to convolution. We show that $L_{w}^{{\rm\Phi}}(G)$ admits no bounded approximate identity under certain conditions. We prove that a closed linear subspace $I$ of the algebra $L_{w}^{{\rm\Phi}}(G)$ is an ideal in $L_{w}^{{\rm\Phi}}(G)$ if and only if $I$ is left translation invariant. For an abelian $G$, we describe the spectrum (maximal ideal space) of the weighted Orlicz algebra and show that weighted Orlicz algebras are semisimple.
We prove that if ${\it\rho}$ is an irreducible positive definite function in the Fourier–Stieltjes algebra $B(G)$ of a locally compact group $G$ with $\Vert {\it\rho}\Vert _{B(G)}=1$, then the iterated powers $({\it\rho}^{n})$ as a sequence of unital completely positive maps on the group $C^{\ast }$-algebra converge to zero in the strong operator topology.
In this paper, for an arbitrary $\ell ^{1}$-Munn algebra $\mathfrak{A}$ over a Banach algebra $A$ with a sandwich matrix $P$, we characterise all homomorphisms from $\mathfrak{A}$ to a commutative Banach algebra $B$. Especially, we study the character space of this algebra. Then, as an application, its character amenability is investigated. Finally, we apply these results to certain semigroups, which are called Rees matrix semigroups.
Let $G$ be a locally compact group with a fixed left Haar measure. In this paper, given a strictly positive Young function ${\rm\Phi}$, we consider $L^{{\rm\Phi}}(G)$ as a Banach left $L^{1}(G)$-module. Then we equip $L^{{\rm\Phi}}(G)$ with the strict topology induced by $L^{1}(G)$ in the sense of Sentilles and Taylor. Some properties of this locally convex topology and a comparison with weak$^{\ast }$, bounded weak$^{\ast }$ and norm topologies are presented.
Meta-centralizers of non-locally compact group algebras are studied. Theorems about their representations with the help of families of generalized measures are proved. Isomorphisms of group algebras are investigated in relation with meta-centralizers.
An algebra A is said to be directly finite if each left-invertible element in the (conditional) unitization of A is right invertible. We show that the reduced group C*-algebra of a unimodular group is directly finite, extending known results for the discrete case. We also investigate the corresponding problem for algebras of p-pseudofunctions, showing that these algebras are directly finite if G is amenable and unimodular, or unimodular with the Kunze–Stein property. An exposition is also given of how existing results from the literature imply that L1(G) is not directly finite when G is the affine group of either the real or complex line.
We study the absolute continuity of the convolution ${\it\delta}_{e^{X}}^{\natural }\star {\it\delta}_{e^{Y}}^{\natural }$ of two orbital measures on the symmetric spaces $\mathbf{SO}_{0}(p,p)/\mathbf{SO}(p)\times \mathbf{SO}(p)$, $\mathbf{SU}(p,p)/\mathbf{S}(\mathbf{U}(p)\times \mathbf{U}(p))$ and $\mathbf{Sp}(p,p)/\mathbf{Sp}(p)\times \mathbf{Sp}(p)$. We prove sharp conditions on $X$, $Y\in \mathfrak{a}$ for the existence of the density of the convolution measure. This measure intervenes in the product formula for the spherical functions.
Motivated by a class of nonlinear nonlocal equations of interest for string theory, we introduce Sobolev spaces on arbitrary locally compact abelian groups and we examine some of their properties. Specifically, we focus on analogs of the Sobolev embedding and Rellich–Kondrachov compactness theorems. As an application, we prove the existence of continuous solutions to a generalized bosonic string equation posed on an arbitrary compact abelian group, and we also remark that our approach allows us to solve very general linear equations in a $p$-adic context.
Let $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}K$ be a locally compact hypergroup endowed with a left Haar measure and let $L^1(K)$ be the usual Lebesgue space of $K$ with respect to the left Haar measure. We investigate some properties of $L^1(K)$ under a locally convex topology $\beta ^1$. Among other things, the semireflexivity of $(L^1(K), \beta ^1)$ and of sequentially$\beta ^1$-continuous functionals is studied. We also show that $(L^1(K), \beta ^1)$ with the convolution multiplication is always a complete semitopological algebra, whereas it is a topological algebra if and only if $K$ is compact.
Using the method of exponential dichotomies, we establish a new existence and uniqueness theorem for almost automorphic solutions of differential equations with piecewise constant argument of the form
This paper deals with the Schrödinger equation $i{\partial }_{s} u(\mathbf{z} , t; s)- \mathcal{L} u(\mathbf{z} , t; s)= 0, $ where $ \mathcal{L} $ is the sub-Laplacian on the Heisenberg group. Assume that the initial data $f$ satisfies $\vert f(\mathbf{z} , t)\vert \lesssim {q}_{\alpha } (\mathbf{z} , t), $ where ${q}_{s} $ is the heat kernel associated to $ \mathcal{L} . $ If in addition $\vert u(\mathbf{z} , t; {s}_{0} )\vert \lesssim {q}_{\beta } (\mathbf{z} , t), $ for some ${s}_{0} \in \mathbb{R} \setminus \{ 0\} , $ then we prove that $u(\mathbf{z} , t; s)= 0$ for all $s\in \mathbb{R} $ whenever $\alpha \beta \lt { s}_{0}^{2} . $ This result holds true in the more general context of $H$-type groups. We also prove an analogous result for the Grushin operator on ${ \mathbb{R} }^{n+ 1} . $
We show that every orbital measure, ${\mu }_{x} $, on a compact exceptional Lie group or algebra has the property that for every positive integer either ${ \mu }_{x}^{k} \in {L}^{2} $ and the support of ${ \mu }_{x}^{k} $ has non-empty interior, or ${ \mu }_{x}^{k} $ is singular to Haar measure and the support of ${ \mu }_{x}^{k} $ has Haar measure zero. We also determine the index $k$ where the change occurs; it depends on properties of the set of annihilating roots of $x$. This result was previously established for the classical Lie groups and algebras. To prove this dichotomy result we combinatorially characterize the subroot systems that are kernels of certain homomorphisms.
In this paper we first show that for a locally compact amenable group $G$, every proper abstract Segal algebra of the Fourier algebra on $G$ is not approximately amenable; consequently, every proper Segal algebra on a locally compact abelian group is not approximately amenable. Then using the hypergroup generated by the dual of a compact group, it is shown that all proper Segal algebras of a class of compact groups including the $2\times 2$ special unitary group, $\mathrm{SU} (2)$, are not approximately amenable.
Let ${F}_{BC} (\lambda , k; t)$ be the Heckman–Opdam hypergeometric function of type BC with multiplicities $k= ({k}_{1} , {k}_{2} , {k}_{3} )$ and weighted half-sum $\rho (k)$ of positive roots. We prove that ${F}_{BC} (\lambda + \rho (k), k; t)$ converges as ${k}_{1} + {k}_{2} \rightarrow \infty $ and ${k}_{1} / {k}_{2} \rightarrow \infty $ to a function of type A for $t\in { \mathbb{R} }^{n} $ and $\lambda \in { \mathbb{C} }^{n} $. This limit is obtained from a corresponding result for Jacobi polynomials of type BC, which is proven for a slightly more general limit behavior of the multiplicities, using an explicit representation of Jacobi polynomials in terms of Jack polynomials. Our limits include limit transitions for the spherical functions of non-compact Grassmann manifolds over one of the fields $ \mathbb{F} = \mathbb{R} , \mathbb{C} , \mathbb{H} $ when the rank is fixed and the dimension tends to infinity. The limit functions turn out to be exactly the spherical functions of the corresponding infinite-dimensional Grassmann manifold in the sense of Olshanski.
For a locally compact group $ \mathcal{G} $, we introduce and study a class of locally convex topologies $\tau $ on the measure algebra $M( \mathcal{G} )$ of $ \mathcal{G} $. In particular, we show that the strong dual of $(M( \mathcal{G} ), \tau )$ can be identified with a closed subspace of the Banach space $M\mathop{( \mathcal{G} )}\nolimits ^{\ast } $; we also investigate some properties of the locally convex space $(M( \mathcal{G} ), \tau )$.
We show that every non-elementary hyperbolic group $\G $ admits a proper affine isometric action on $L^p(\bd \G \times \bd \G )$, where $\bd \G $ denotes the boundary of $\G $ and $p$ is large enough. Our construction involves a $\G $-invariant measure on $\bd \G \times \bd \G $ analogous to the Bowen–Margulis measure from the ${\rm CAT}(-1)$ setting, as well as a geometric, Busemann-type cocycle. We also deduce that $\G $ admits a proper affine isometric action on the first $\ell ^p$-cohomology group $H^1_{(p)}(\G )$ for large enough $p$.
Let $G$ be a locally compact group. In this paper, we show that if $G$ is a nondiscrete locally compact group, $p\in (0, 1)$ and $q\in (0, + \infty ] $, then $\{ (f, g)\in {L}^{p} (G)\times {L}^{q} (G): f\ast g\text{ is finite } \lambda \text{-a.e.} \} $ is a set of first category in ${L}^{p} (G)\times {L}^{q} (G)$. We also show that if $G$ is a nondiscrete locally compact group and $p, q, r\in [1, + \infty ] $ such that $1/ p+ 1/ q\gt 1+ 1/ r$, then $\{ (f, g)\in {L}^{p} (G)\times {L}^{q} (G): f\ast g\in {L}^{r} (G)\} $, is a set of first category in ${L}^{p} (G)\times {L}^{q} (G)$. Consequently, for $p, q\in [1+ \infty )$ and $r\in [1, + \infty ] $ with $1/ p+ 1/ q\gt 1+ 1/ r$, $G$ is discrete if and only if ${L}^{p} (G)\ast {L}^{q} (G)\subseteq {L}^{r} (G)$; this answers a question raised by Saeki [‘The ${L}^{p} $-conjecture and Young’s inequality’, Illinois J. Math.34 (1990), 615–627].
We construct a two-parameter family of actions ωk,a of the Lie algebra 𝔰𝔩(2,ℝ) by differential–difference operators on ℝN∖{0}. Here k is a multiplicity function for the Dunkl operators, and a>0 arises from the interpolation of the two 𝔰𝔩(2,ℝ) actions on the Weil representation of Mp(N,ℝ) and the minimal unitary representation of O(N+1,2). We prove that this action ωk,a lifts to a unitary representation of the universal covering of SL (2,ℝ) , and can even be extended to a holomorphic semigroup Ωk,a. In the k≡0case, our semigroup generalizes the Hermite semigroup studied by R. Howe (a=2)and the Laguerre semigroup studied by the second author with G. Mano (a=1) . One boundary value of our semigroup Ωk,a provides us with (k,a) -generalized Fourier transforms ℱk,a, which include the Dunkl transform 𝒟k (a=2)and a new unitary operator ℋk (a=1) , namely a Dunkl–Hankel transform. We establish the inversion formula, a generalization of the Plancherel theorem, the Hecke identity, the Bochner identity, and a Heisenberg uncertainty relation for ℱk,a. We also find kernel functions for Ωk,a and ℱk,a for a=1,2in terms of Bessel functions and the Dunkl intertwining operator.
Let G be a locally compact group and H be a compact subgroup of G. Using a general criterion established by Neufang [‘A unified approach to the topological centre problem for certain Banach algebras arising in abstract harmonic analysis’, Arch. Math.82(2) (2004), 164–171], we show that the Banach algebra L1(G/H) is strongly Arens irregular for a large class of locally compact groups.
For a locally compact group G and an arbitrary subset J of [1,∞], we introduce ILJ(G) as a subspace of ⋂ p∈JLp(G) with some norm to make it a Banach space. Then, for some special choice of J, we investigate some topological and algebraic properties of ILJ(G) as a Banach algebra under a convolution product.