To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We develop spectral theory for the generator of the $q$-Boson (stochastic) particle system. Our central result is a Plancherel type isomorphism theorem for this system. This theorem has various implications. It proves the completeness of the Bethe ansatz for the $q$-Boson generator and consequently enables us to solve the Kolmogorov forward and backward equations for general initial data. Owing to a Markov duality with $q$-TASEP ($q$-deformed totally asymmetric simple exclusion process), this leads to moment formulas which characterize the fixed time distribution of $q$-TASEP started from general initial conditions. The theorem also implies the biorthogonality of the left and right eigenfunctions. We consider limits of our $q$-Boson results to a discrete delta Bose gas considered previously by van Diejen, as well as to another discrete delta Bose gas that describes the evolution of moments of the semi-discrete stochastic heat equation (or equivalently, the O’Connell–Yor semi-discrete directed polymer partition function). A further limit takes us to the delta Bose gas which arises in studying moments of the stochastic heat equation/Kardar–Parisi–Zhang equation.
The problem of finding a nontrivial factor of a polynomial $f(x)$ over a finite field ${\mathbb{F}}_q$ has many known efficient, but randomized, algorithms. The deterministic complexity of this problem is a famous open question even assuming the generalized Riemann hypothesis (GRH). In this work we improve the state of the art by focusing on prime degree polynomials; let $n$ be the degree. If $(n-1)$ has a‘large’ $r$-smooth divisor $s$, then we find a nontrivial factor of $f(x)$ in deterministic $\mbox{poly}(n^r,\log q)$ time, assuming GRH and that $s=\Omega (\sqrt{n/2^r})$. Thus, for $r=O(1)$ our algorithm is polynomial time. Further, for $r=\Omega (\log \log n)$ there are infinitely many prime degrees $n$ for which our algorithm is applicable and better than the best known, assuming GRH. Our methods build on the algebraic-combinatorial framework of $m$-schemes initiated by Ivanyos, Karpinski and Saxena (ISSAC 2009). We show that the $m$-scheme on $n$ points, implicitly appearing in our factoring algorithm, has an exceptional structure, leading us to the improved time complexity. Our structure theorem proves the existence of small intersection numbers in any association scheme that has many relations, and roughly equal valencies and indistinguishing numbers.
A graph $\Gamma $ is $G$-symmetric if $\Gamma $ admits $G$ as a group of automorphisms acting transitively on the set of vertices and the set of arcs of $\Gamma $, where an arc is an ordered pair of adjacent vertices. In the case when $G$ is imprimitive on $V(\Gamma )$, namely when $V(\Gamma )$ admits a nontrivial $G$-invariant partition ${\mathcal{B}}$, the quotient graph $\Gamma _{\mathcal{B}}$ of $\Gamma $ with respect to ${\mathcal{B}}$ is always $G$-symmetric and sometimes even $(G, 2)$-arc transitive. (A $G$-symmetric graph is $(G, 2)$-arc transitive if $G$ is transitive on the set of oriented paths of length two.) In this paper we obtain necessary conditions for $\Gamma _{{\mathcal{B}}}$ to be $(G, 2)$-arc transitive (regardless of whether $\Gamma $ is $(G, 2)$-arc transitive) in the case when $v-k$ is an odd prime $p$, where $v$ is the block size of ${\mathcal{B}}$ and $k$ is the number of vertices in a block having neighbours in a fixed adjacent block. These conditions are given in terms of $v, k$ and two other parameters with respect to $(\Gamma , {\mathcal{B}})$ together with a certain 2-point transitive block design induced by $(\Gamma , {\mathcal{B}})$. We prove further that if $p=3$ or $5$ then these necessary conditions are essentially sufficient for $\Gamma _{{\mathcal{B}}}$ to be $(G, 2)$-arc transitive.
Let $d$ and $n$ be positive integers such that $n\geq d+ 1$ and ${\tau }_{1} , \ldots , {\tau }_{n} $ integers such that ${\tau }_{1} \lt \cdots \lt {\tau }_{n} $. Let ${C}_{d} ({\tau }_{1} , \ldots , {\tau }_{n} )\subset { \mathbb{R} }^{d} $ denote the cyclic polytope of dimension $d$ with $n$ vertices $({\tau }_{1} , { \tau }_{1}^{2} , \ldots , { \tau }_{1}^{d} ),\ldots , ({\tau }_{n} , { \tau }_{n}^{2} , \ldots , { \tau }_{n}^{d} )$. We are interested in finding the smallest integer ${\gamma }_{d} $ such that if ${\tau }_{i+ 1} - {\tau }_{i} \geq {\gamma }_{d} $ for $1\leq i\lt n$, then ${C}_{d} ({\tau }_{1} , \ldots , {\tau }_{n} )$ is normal. One of the known results is ${\gamma }_{d} \leq d(d+ 1)$. In the present paper a new inequality ${\gamma }_{d} \leq {d}^{2} - 1$ is proved. Moreover, it is shown that if $d\geq 4$ with ${\tau }_{3} - {\tau }_{2} = 1$, then ${C}_{d} ({\tau }_{1} , \ldots , {\tau }_{n} )$ is not very ample.
While the intersection of the Grassmannian Bruhat decompositions for all coordinate flags is an intractable mess, it turns out that the intersection of only the cyclic shifts of one Bruhat decomposition has many of the good properties of the Bruhat and Richardson decompositions. This decomposition coincides with the projection of the Richardson stratification of the flag manifold, studied by Lusztig, Rietsch, Brown–Goodearl–Yakimov and the present authors. However, its cyclic-invariance is hidden in this description. Postnikov gave many cyclic-invariant ways to index the strata, and we give a new one, by a subset of the affine Weyl group we call bounded juggling patterns. We call the strata positroid varieties. Applying results from [A. Knutson, T. Lam and D. Speyer, Projections of Richardson varieties, J. Reine Angew. Math., to appear, arXiv:1008.3939 [math.AG]], we show that positroid varieties are normal, Cohen–Macaulay, have rational singularities, and are defined as schemes by the vanishing of Plücker coordinates. We prove that their associated cohomology classes are represented by affine Stanley functions. This latter fact lets us connect Postnikov’s and Buch–Kresch–Tamvakis’ approaches to quantum Schubert calculus.
The saturation theorem of Knutson and Tao concerns the nonvanishing of Littlewood–Richardson coefficients. In combination with work of Klyachko, it implies Horn’s conjecture about eigenvalues of sums of Hermitian matrices. This eigenvalue problem has a generalization to majorized sums of Hermitian matrices, due to S. Friedland. We further illustrate the common features between these two eigenvalue problems and their connection to Schubert calculus of Grassmannians. Our main result gives a Schubert calculus interpretation of Friedland’s problem, via equivariant cohomology of Grassmannians. In particular, we prove a saturation theorem for this setting. Our arguments employ the aforementioned work together with recent work of H. Thomas and A. Yong.
Local models are schemes, defined in terms of linear-algebraic moduli problems, which are used to model the étale-local structure of integral models of certain $p$-adic PEL Shimura varieties defined by Rapoport and Zink. In the case of a unitary similitude group whose localization at ${ \mathbb{Q} }_{p} $ is ramified, quasi-split $G{U}_{n} $, Pappas has observed that the original local models are typically not flat, and he and Rapoport have introduced new conditions to the original moduli problem which they conjecture to yield a flat scheme. In a previous paper, we proved that their new local models are topologically flat when $n$ is odd. In the present paper, we prove topological flatness when $n$ is even. Along the way, we characterize the $\mu $-admissible set for certain cocharacters $\mu $ in types $B$ and $D$, and we show that for these cocharacters admissibility can be characterized in a vertexwise way, confirming a conjecture of Pappas and Rapoport.
Let Ω be a finite set and let G be a permutation group acting on it. A subset H of G is called t-intersecting if any two elements in H agree on at least t points. Let SDn and SBn be the classical Coxeter group of type Dn and type Bn, respectively. We show that the maximum-sized (2t)-intersecting families in SDn and SBn are precisely cosets of stabilizers of t points in [n] ≔ {1, 2, …, n}, provided n is sufficiently large depending on t.
We study branching multiplicity spaces of complex classical groups in terms of ${\mathrm{GL} }_{2} $ representations. In particular, we show how combinatorics of ${\mathrm{GL} }_{2} $ representations are intertwined to make branching rules under the restriction of ${\mathrm{GL} }_{n} $ to ${\mathrm{GL} }_{n- 2} $. We also discuss analogous results for the symplectic and orthogonal groups.
We consider a code to be a subset of the vertex set of a Hamming graph. We examine elusive pairs, code-group pairs where the code is not determined by knowledge of its set of neighbours. We construct a new infinite family of elusive pairs, where the group in question acts transitively on the set of neighbours of the code. In these examples, the alphabet size always divides the length of the code. We show that there is no elusive pair for the smallest set of parameters that does not satisfy this condition. We also pose several questions regarding elusive pairs.
We construct two bases for each cluster algebra coming from a triangulated surface without punctures. We work in the context of a coefficient system coming from a full-rank exchange matrix, such as principal coefficients.
We prove a conjecture of Kontsevich, which asserts that the iterations of the non-commutative rational map Fr:(x,y)→(xyx−1,(1+yr)x−1) are given by non-commutative Laurent polynomials with non-negative integer coefficients.
We compute the quiver of any finite monoid that has a basic algebra over an algebraically closed field of characteristic zero. More generally, we reduce the computation of the quiver over a splitting field of a class of monoids that we term rectangular monoids (in the semigroup theory literature the class is known as DO) to representation-theoretic computations for group algebras of maximal subgroups. Hence in good characteristic for the maximal subgroups, this gives an essentially complete computation. Since groups are examples of rectangular monoids, we cannot hope to do better than this. For the subclass of ℛ-trivial monoids, we also provide a semigroup-theoretic description of the projective indecomposable modules and compute the Cartan matrix.
We construct and classify all groups given by triangular presentations associated to the smallest thick generalized quadrangle that act simply transitively on the vertices of hyperbolic triangular buildings of the smallest non-trivial thickness. Our classification yields 23 non-isomorphic torsion-free groups (which were obtained in an earlier work) and 168 non-isomorphic torsion groups acting on one of two possible buildings with the smallest thick generalized quadrangle as the link of each vertex. In analogy with the case, we find both torsion and torsion-free groups acting on the same building.
This paper aims to lay the foundations for a combinatorial study, via orthogonal functions and intertwining operators, of category for the rational Cherednik algebra of type G(r, p, n). As a first application, a self-contained and elementary proof of the analogue for the groups G(r, p, n), with r > 1, of Gordon's Theorem (previously Haiman's Conjecture) on the diagonal co-invariant ring is given. No restriction is imposed on p; the result for p ≠ r has been proved by Vale using a technique analogous to Gordon's. Because of the combinatorial application to Haiman's Conjecture, the paper is logically self-contained except for standard facts about complex reflection groups. The main results should be accessible to mathematicians working in algebraic combinatorics who are unfamiliar with the impressive range of ideas used in Gordon's proof of his theorem.
For each finite real reflection group W, we identify a copy of the type-W simplicial generalized associahedron inside the corresponding simplicial permutahedron. This defines a bijection between the facets of the generalized associahedron and the elements of the type-W non-crossing partition lattice that is more tractable than previous such bijections. We show that the simplicial fan determined by this associahedron coincides with the Cambrian fan for W.
We construct the Schubert basis of the torus-equivariant K-homology of the affine Grassmannian of a simple algebraic group G, using the K-theoretic NilHecke ring of Kostant and Kumar. This is the K-theoretic analogue of a construction of Peterson in equivariant homology. For the case where G=SLn, the K-homology of the affine Grassmannian is identified with a sub-Hopf algebra of the ring of symmetric functions. The Schubert basis is represented by inhomogeneous symmetric functions, calledK-k-Schur functions, whose highest-degree term is a k-Schur function. The dual basis in K-cohomology is given by the affine stable Grothendieck polynomials, verifying a conjecture of Lam. In addition, we give a Pieri rule in K-homology. Many of our constructions have geometric interpretations by means of Kashiwara’s thick affine flag manifold.
We situate the noncrossing partitions associated with a finite Coxeter group within the context of the representation theory of quivers. We describe Reading’s bijection between noncrossing partitions and clusters in this context, and show that it extends to the extended Dynkin case. Our setup also yields a new proof that the noncrossing partitions associated with a finite Coxeter group form a lattice. We also prove some new results within the theory of quiver representations. We show that the finitely generated, exact abelian, and extension-closed subcategories of the representations of a quiver Q without oriented cycles are in natural bijection with the cluster tilting objects in the associated cluster category. We also show that these subcategories are exactly the finitely generated categories that can be obtained as the semistable objects with respect to some stability condition.