To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
the pioneer of interchange laws in universal algebra
We establish a combinatorial model for the Boardman–Vogt tensor product of several absolutely free operads, that is, free symmetric operads that are also free as 𝕊-modules. Our results imply that such a tensor product is always a free 𝕊-module, in contrast with the results of Kock and Bremner–Madariaga on hidden commutativity for the Boardman–Vogt tensor square of the operad of non-unital associative algebras.
Le diagrams and Grassmann necklaces both index the collection of positroids in the nonnegative Grassmannian Gr≥0(k, n), but they excel at very different tasks: for example, the dimension of a positroid is easily extracted from its Le diagram, while the list of bases of a positroid is far more easily obtained from its Grassmann necklace. Explicit bijections between the two are, therefore, desirable. An algorithm for turning a Le diagram into a Grassmann necklace already exists; in this note, we give the reverse algorithm.
A result of Haglund implies that the $(q,t)$-bigraded Hilbert series of the space of diagonal harmonics is a $(q,t)$-Ehrhart function of the flow polytope of a complete graph with netflow vector $(-n,1,\ldots ,1)$. We study the $(q,t)$-Ehrhart functions of flow polytopes of threshold graphs with arbitrary netflow vectors. Our results generalize previously known specializations of the mentioned bigraded Hilbert series at $t=1$, $0$, and $q^{-1}$. As a corollary to our results, we obtain a proof of a conjecture of Armstrong, Garsia, Haglund, Rhoades, and Sagan about the $(q,q^{-1})$-Ehrhart function of the flow polytope of a complete graph with an arbitrary netflow vector.
We explicitly describe the isomorphism between two combinatorial realizations of Kashiwara’s infinity crystal in types B and C. The first realization is in terms of marginally large tableaux and the other is in terms of Kostant partitions coming from PBW bases. We also discuss a stack notation for Kostant partitions which simplifies that realization.
In this paper we define almost gentle algebras, which are monomial special multiserial algebras generalizing gentle algebras. We show that the trivial extension of an almost gentle algebra by its minimal injective co-generator is a symmetric special multiserial algebra and hence a Brauer configuration algebra. Conversely, we show that any almost gentle algebra is an admissible cut of a unique Brauer configuration algebra and, as a consequence, we obtain that every Brauer configuration algebra with multiplicity function identically one is the trivial extension of an almost gentle algebra. We show that a hypergraph is associated with every almost gentle algebra A, and that this hypergraph induces the Brauer configuration of the trivial extension of A. Among other things, this gives a combinatorial criterion to decide when two almost gentle algebras have isomorphic trivial extensions.
If $K$ is a simplicial complex on $m$ vertices, the flagification of $K$ is the minimal flag complex $K^{f}$ on the same vertex set that contains $K$. Letting $L$ be the set of vertices, there is a sequence of simplicial inclusions $L\stackrel{}{\longrightarrow }K\stackrel{}{\longrightarrow }K^{f}$. This induces a sequence of maps of polyhedral products $(\text{}\underline{X},\text{}\underline{A})^{L}\stackrel{g}{\longrightarrow }(\text{}\underline{X},\text{}\underline{A})^{K}\stackrel{f}{\longrightarrow }(\text{}\underline{X},\text{}\underline{A})^{K^{f}}$. We show that $\unicode[STIX]{x1D6FA}f$ and $\unicode[STIX]{x1D6FA}f\circ \unicode[STIX]{x1D6FA}g$ have right homotopy inverses and draw consequences. For a flag complex $K$ the polyhedral product of the form $(\text{}\underline{CY},\text{}\underline{Y})^{K}$ is a co-$H$-space if and only if the 1-skeleton of $K$ is a chordal graph, and we deduce that the maps $f$ and $f\circ g$ have right homotopy inverses in this case.
A square-free monomial ideal $I$ of $k[x_{1},\ldots ,x_{n}]$ is said to be an $f$-ideal if the facet complex and non-face complex associated with $I$ have the same $f$-vector. We show that $I$ is an $f$-ideal if and only if its Newton complementary dual $\widehat{I}$ is also an $f$-ideal. Because of this duality, previous results about some classes of $f$-ideals can be extended to a much larger class of $f$-ideals. An interesting by-product of our work is an alternative formulation of the Kruskal–Katona theorem for $f$-vectors of simplicial complexes.
Boij–Söderberg theory characterizes syzygies of graded modules and sheaves on projective space. This paper continues earlier work with Sam, extending the theory to the setting of $\text{GL}_{k}$-equivariant modules and sheaves on Grassmannians. Algebraically, we study modules over a polynomial ring in $kn$ variables, thought of as the entries of a $k\times n$ matrix. We give equivariant analogs of two important features of the ordinary theory: the Herzog–Kühl equations and the pairing between Betti and cohomology tables. As a necessary step, we also extend previous results, concerning the base case of square matrices, to cover complexes other than free resolutions. Our statements specialize to those of ordinary Boij–Söderberg theory when $k=1$. Our proof of the equivariant pairing gives a new proof in the graded setting: it relies on finding perfect matchings on certain graphs associated to Betti tables and to spectral sequences. As an application, we construct three families of extremal rays on the Betti cone for $2\times 3$ matrices.
We propose here a generalization of the problem addressed by the SHGH conjecture. The SHGH conjecture posits a solution to the question of how many conditions a general union $X$ of fat points imposes on the complete linear system of curves in $\mathbb{P}^{2}$ of fixed degree $d$, in terms of the occurrence of certain rational curves in the base locus of the linear subsystem defined by $X$. As a first step towards a new theory, we show that rational curves play a similar role in a special case of a generalized problem, which asks how many conditions are imposed by a general union of fat points on linear subsystems defined by imposed base points. Moreover, motivated by work of Di Gennaro, Ilardi and Vallès and of Faenzi and Vallès, we relate our results to the failure of a strong Lefschetz property, and we give a Lefschetz-like criterion for Terao’s conjecture on the freeness of line arrangements.
Athanasiadis [‘A survey of subdivisions and local $h$-vectors’, in The Mathematical Legacy of Richard P. Stanley (American Mathematical Society, Providence, RI, 2017), 39–51] asked whether the local $h$-polynomials of type $A$ cluster subdivisions have only real zeros. We confirm this conjecture and prove that the local $h$-polynomials for all the Cartan–Killing types have only real roots. Our proofs use multiplier sequences and Chebyshev polynomials of the second kind.
Classical finite association schemes lead to finite-dimensional algebras which are generated by finitely many stochastic matrices. Moreover, there exist associated finite hypergroups. The notion of classical discrete association schemes can be easily extended to the possibly infinite case. Moreover, this notion can be relaxed slightly by using suitably deformed families of stochastic matrices by skipping the integrality conditions. This leads to a larger class of examples which are again associated with discrete hypergroups. In this paper we propose a topological generalization of association schemes by using a locally compact basis space $X$ and a family of Markov-kernels on $X$ indexed by some locally compact space $D$ where the supports of the associated probability measures satisfy some partition property. These objects, called continuous association schemes, will be related to hypergroup structures on $D$. We study some basic results for this notion and present several classes of examples. It turns out that, for a given commutative hypergroup, the existence of a related continuous association scheme implies that the hypergroup has many features of a double coset hypergroup. We, in particular, show that commutative hypergroups, which are associated with commutative continuous association schemes, carry dual positive product formulas for the characters. On the other hand, we prove some rigidity results in particular in the compact case which say that for given spaces $X,D$ there are only a few continuous association schemes.
Employing a simple and direct geometric approach, we prove formulas for a large class of degeneracy loci in types B, C, and D, including those coming from all isotropic Grassmannians. The results unify and generalize previous Pfaffian and determinantal formulas. Specializing to the Grassmannian case, we recover the remarkable theta- and eta-polynomials of Buch, Kresch, Tamvakis, and Wilson. Our method yields streamlined proofs which proceed in parallel for all four classical types, substantially simplifying previous work on the subject. In an appendix, we develop some foundational algebra and prove several Pfaffian identities. Another appendix establishes a basic formula for classes in quadric bundles.
For a skew-symmetrizable cluster algebra ${\mathcal{A}}_{t_{0}}$ with principal coefficients at $t_{0}$, we prove that each seed $\unicode[STIX]{x1D6F4}_{t}$ of ${\mathcal{A}}_{t_{0}}$ is uniquely determined by its $C$-matrix, which was proposed by Fomin and Zelevinsky (Compos. Math. 143 (2007), 112–164) as a conjecture. Our proof is based on the fact that the positivity of cluster variables and sign coherence of $c$-vectors hold for ${\mathcal{A}}_{t_{0}}$, which was actually verified in Gross et al. (Canonical bases for cluster algebras, J. Amer. Math. Soc. 31(2) (2018), 497–608). Further discussion is provided in the sign-skew-symmetric case so as to obtain a weak version of the conjecture in this general case.
This paper studies the combinatorics of lattice congruences of the weak order on a finite Weyl group $W$, using representation theory of the corresponding preprojective algebra $\unicode[STIX]{x1D6F1}$. Natural bijections are constructed between important objects including join-irreducible congruences, join-irreducible (respectively, meet-irreducible) elements of $W$, indecomposable $\unicode[STIX]{x1D70F}$-rigid (respectively, $\unicode[STIX]{x1D70F}^{-}$-rigid) modules and layers of $\unicode[STIX]{x1D6F1}$. The lattice-theoretically natural labelling of the Hasse quiver by join-irreducible elements of $W$ is shown to coincide with the algebraically natural labelling by layers of $\unicode[STIX]{x1D6F1}$. We show that layers of $\unicode[STIX]{x1D6F1}$ are nothing but bricks (or equivalently stones, or 2-spherical modules). The forcing order on join-irreducible elements of $W$ (arising from the study of lattice congruences) is described algebraically in terms of the doubleton extension order. We give a combinatorial description of indecomposable $\unicode[STIX]{x1D70F}^{-}$-rigid modules for type $A$ and $D$.
We investigate the structure of the twisted Brauer monoid , comparing and contrasting it with the structure of the (untwisted) Brauer monoid . We characterize Green's relations and pre-orders on , describe the lattice of ideals and give necessary and sufficient conditions for an ideal to be idempotent generated. We obtain formulae for the rank (smallest size of a generating set) and (where applicable) the idempotent rank (smallest size of an idempotent generating set) of each principal ideal; in particular, when an ideal is idempotent generated, its rank and idempotent rank are equal. As an application of our results, we describe the idempotent generated subsemigroup of (which is not an ideal), as well as the singular ideal of (which is neither principal nor idempotent generated), and we deduce that the singular part of the Brauer monoid is idempotent generated, a result previously proved by Maltcev and Mazorchuk.
The set of row reduced matrices (and of echelon form matrices) is closed under multiplication. We show that any system of representatives for the $\text{Gl}_{n}(\mathbb{K})$ action on the $n\times n$ matrices, which is closed under multiplication, is necessarily conjugate to one that is in simultaneous echelon form. We call such closed representative systems Grassmannian semigroups. We study internal properties of such Grassmannian semigroups and show that they are algebraic semigroups and admit gradings by the finite semigroup of partial order preserving permutations, with components that are naturally in one–one correspondence with the Schubert cells of the total Grassmannian. We show that there are infinitely many isomorphism types of such semigroups in general, and two such semigroups are isomorphic exactly when they are semiconjugate in $M_{n}(\mathbb{K})$. We also investigate their representation theory over an arbitrary field, and other connections with multiplicative structures on Grassmannians and Young diagrams.
In this paper, we investigate the set of accumulation points of normalized roots of infinite Coxeter groups for certain class of their action. Concretely, we prove the conjecture proposed in [6, Section 3.2] in the case where the equipped Coxeter matrices are of type $(n-1,1)$, where $n$ is the rank. Moreover, we obtain that the set of such accumulation points coincides with the closure of the orbit of one point of normalized limit roots. In addition, in order to prove our main results, we also investigate some properties on fixed points of the action.
A 1993 result of Alon and Füredi gives a sharp upper bound on the number of zeros of a multivariate polynomial over an integral domain in a finite grid, in terms of the degree of the polynomial. This result was recently generalized to polynomials over an arbitrary commutative ring, assuming a certain ‘Condition (D)’ on the grid which holds vacuously when the ring is a domain. In the first half of this paper we give a further generalized Alon–Füredi theorem which provides a sharp upper bound when the degrees of the polynomial in each variable are also taken into account. This yields in particular a new proof of Alon–Füredi. We then discuss the relationship between Alon–Füredi and results of DeMillo–Lipton, Schwartz and Zippel. A direct coding theoretic interpretation of Alon–Füredi theorem and its generalization in terms of Reed–Muller-type affine variety codes is shown, which gives us the minimum Hamming distance of these codes. Then we apply the Alon–Füredi theorem to quickly recover – and sometimes strengthen – old and new results in finite geometry, including the Jamison–Brouwer–Schrijver bound on affine blocking sets. We end with a discussion of multiplicity enhancements.
We solve a problem posed by Cardinali and Sastry (Elliptic ovoids and their rosettes in a classical generalized quadrangle of even order. Proc. Indian Acad. Sci. Math. Sci.126 (2016), 591–612) about factorization of 2-covers of finite classical generalized quadrangles (GQs). To that end, we develop a general theory of cover factorization for GQs, and in particular, we study the isomorphism problem for such covers and associated geometries. As a byproduct, we obtain new results about semi-partial geometries coming from θ-covers, and consider related problems.
We present a stand-alone simple proof of a probabilistic interpretation of the Gaussian binomial coefficients by conditioning a random walk to hit a given lattice point at a given time.