To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A sequence S is called anagram-free if it contains no consecutive symbols r1r2. . .rkrk+1. . .r2k such that rk+1. . .r2k is a permutation of the block r1r2. . .rk. Answering a question of Erdős and Brown, Keränen constructed an infinite anagram-free sequence on four symbols. Motivated by the work of Alon, Grytczuk, Hałuszczak and Riordan [2], we consider a natural generalization of anagram-free sequences for graph colourings. A colouring of the vertices of a given graph G is called anagram-free if the sequence of colours on any path in G is anagram-free. We call the minimal number of colours needed for such a colouring the anagram-chromatic number of G.
In this paper we study the anagram-chromatic number of several classes of graphs like trees, minor-free graphs and bounded-degree graphs. Surprisingly, we show that there are bounded-degree graphs (such as random regular graphs) in which anagrams cannot be avoided unless we essentially give each vertex a separate colour.
We consider the complete graph 𝜅n on n vertices with exponential mean n edge lengths. Writing Cij for the weight of the smallest-weight path between vertices i, j ∈ [n], Janson [18] showed that maxi,j∈[n]Cij/logn converges in probability to 3. We extend these results by showing that maxi,j∈[n]Cij − 3 logn converges in distribution to some limiting random variable that can be identified via a maximization procedure on a limiting infinite random structure. Interestingly, this limiting random variable has also appeared as the weak limit of the re-centred graph diameter of the barely supercritical Erdős–Rényi random graph in [22].
Let hom(G) denote the size of the largest clique or independent set of a graph G. In 2007, Bukh and Sudakov proved that every n-vertex graph G with hom(G) = O(logn) contains an induced subgraph with Ω(n1/2) distinct degrees, and raised the question of deciding whether an analogous result holds for every n-vertex graph G with hom(G) = O(nϵ), where ϵ > 0 is a fixed constant. Here, we answer their question in the affirmative and show that every graph G on n vertices contains an induced subgraph with Ω((n/hom(G))1/2) distinct degrees. We also prove a stronger result for graphs with large cliques or independent sets and show, for any fixed k ∈ ℕ, that if an n-vertex graph G contains no induced subgraph with k distinct degrees, then hom(G)⩾n/(k − 1) − o(n); this bound is essentially best possible.
Consider the complete graph on n vertices, with edge weights drawn independently from the exponential distribution with unit mean. Janson showed that the typical distance between two vertices scales as log n/n, whereas the diameter (maximum distance between any two vertices) scales as 3 log n/n. Bollobás, Gamarnik, Riordan and Sudakov showed that, for any fixed k, the weight of the Steiner tree connecting k typical vertices scales as (k − 1)log n/n, which recovers Janson's result for k = 2. We extend this to show that the worst case k-Steiner tree, over all choices of k vertices, has weight scaling as (2k − 1)log n/n and finally, we generalize this result to Steiner trees with a mixture of typical and worst case vertices.
A collection of $k$ sets is said to form a $k$-sunflower, or $\unicode[STIX]{x1D6E5}$-system, if the intersection of any two sets from the collection is the same, and we call a family of sets ${\mathcal{F}}$sunflower-free if it contains no $3$-sunflowers. Following the recent breakthrough of Ellenberg and Gijswijt (‘On large subsets of $\mathbb{F}_{q}^{n}$ with no three-term arithmetic progression’, Ann. of Math. (2) 185 (2017), 339–343); (‘Progression-free sets in $\mathbb{Z}_{4}^{n}$ are exponentially small’, Ann. of Math. (2) 185 (2017), 331–337) we apply the polynomial method directly to Erdős–Szemerédi sunflower problem (Erdős and Szemerédi, ‘Combinatorial properties of systems of sets’, J. Combin. Theory Ser. A 24 (1978), 308–313) and prove that any sunflower-free family ${\mathcal{F}}$ of subsets of $\{1,2,\ldots ,n\}$ has size at most
We say that a set $A\subset (\mathbb{Z}/D\mathbb{Z})^{n}=\{1,2,\ldots ,D\}^{n}$ for $D>2$ is sunflower-free if for every distinct triple $x,y,z\in A$ there exists a coordinate $i$ where exactly two of $x_{i},y_{i},z_{i}$ are equal. Using a version of the polynomial method with characters $\unicode[STIX]{x1D712}:\mathbb{Z}/D\mathbb{Z}\rightarrow \mathbb{C}$ instead of polynomials, we show that any sunflower-free set $A\subset (\mathbb{Z}/D\mathbb{Z})^{n}$ has size
where $c_{D}=\frac{3}{2^{2/3}}(D-1)^{2/3}$. This can be seen as making further progress on a possible approach to proving the Erdős and Rado sunflower conjecture (‘Intersection theorems for systems of sets’,J. Lond. Math. Soc. (2) 35 (1960), 85–90), which by the work of Alon et al. (‘On sunflowers and matrix multiplication’, Comput. Complexity22 (2013), 219–243; Theorem 2.6) is equivalent to proving that $c_{D}\leqslant C$ for some constant $C$ independent of $D$.
We address a unification of the Schubert calculus problems solved by Buch [A Littlewood–Richardson rule for the $K$-theory of Grassmannians, Acta Math. 189 (2002), 37–78] and Knutson and Tao [Puzzles and (equivariant) cohomology of Grassmannians, Duke Math. J.119(2) (2003), 221–260]. That is, we prove a combinatorial rule for the structure coefficients in the torus-equivariant $K$-theory of Grassmannians with respect to the basis of Schubert structure sheaves. This rule is positive in the sense of Anderson et al. [Positivity and Kleiman transversality in equivariant $K$-theory of homogeneous spaces, J. Eur. Math. Soc.13 (2011), 57–84] and in a stronger form. Our work is based on the combinatorics of genomic tableaux and a generalization of Schützenberger’s [Combinatoire et représentation du groupe symétrique, in Actes Table Ronde CNRS, Univ. Louis-Pasteur Strasbourg, Strasbourg, 1976, Lecture Notes in Mathematics, 579 (Springer, Berlin, 1977), 59–113] jeu de taquin. Using our rule, we deduce the two other combinatorial rules for these coefficients. The first is a conjecture of Thomas and Yong [Equivariant Schubert calculus and jeu de taquin, Ann. Inst. Fourier (Grenoble) (2013), to appear]. The second (found in a sequel to this paper) is a puzzle rule, resolving a conjecture of Knutson and Vakil from 2005.
We give a minimum degree condition sufficient to ensure the existence of a fractional Kr-decomposition in a balanced r-partite graph (subject to some further simple necessary conditions). This generalizes the non-partite problem studied recently by Barber, Lo, Kühn, Osthus and the author, and the 3-partite fractional K3-decomposition problem studied recently by Bowditch and Dukes. Combining our result with recent work by Barber, Kühn, Lo, Osthus and Taylor, this gives a minimum degree condition sufficient to ensure the existence of a (non-fractional) Kr-decomposition in a balanced r-partite graph (subject to the same simple necessary conditions).
The $l_{0}$-minimisation problem has attracted much attention in recent years with the development of compressive sensing. The spark of a matrix is an important measure that can determine whether a given sparse vector is the solution of an $l_{0}$-minimisation problem. However, its calculation involves a combinatorial search over all possible subsets of columns of the matrix, which is an NP-hard problem. We use Weyl’s theorem to give two new lower bounds for the spark of a matrix. One is based on the mutual coherence and the other on the coherence function. Numerical examples are given to show that the new bounds can be significantly better than existing ones.
For an orientation H with n vertices, let T(H) denote the maximum possible number of labelled copies of H in an n-vertex tournament. It is easily seen that T(H) ≥ n!/2e(H), as the latter is the expected number of such copies in a random tournament. For n odd, let R(H) denote the maximum possible number of labelled copies of H in an n-vertex regular tournament. In fact, Adler, Alon and Ross proved that for H=Cn, the directed Hamilton cycle, T(Cn) ≥ (e−o(1))n!/2n, and it was observed by Alon that already R(Cn) ≥ (e−o(1))n!/2n. Similar results hold for the directed Hamilton path Pn. In other words, for the Hamilton path and cycle, the lower bound derived from the expectation argument can be improved by a constant factor. In this paper we significantly extend these results, and prove that they hold for a larger family of orientations H which includes all bounded-degree Eulerian orientations and all bounded-degree balanced orientations, as well as many others. One corollary of our method is that for any fixed k, every k-regular orientation H with n vertices satisfies T(H) ≥ (ek−o(1))n!/2e(H), and in fact, for n odd, R(H) ≥ (ek−o(1))n!/2e(H).
We study the joint degree counts in linear preferential attachment random graphs and find a simple representation for the limit distribution in infinite sequence space. We show weak convergence with respect to the p-norm topology for appropriate p and also provide optimal rates of convergence of the finite-dimensional distributions. The results hold for models with any general initial seed graph and any fixed number of initial outgoing edges per vertex; we generate nontree graphs using both a lumping and a sequential rule. Convergence of the order statistics and optimal rates of convergence to the maximum of the degrees is also established.
We show that the maximum number of convex polygons in a triangulation of n points in the plane is O(1.5029n). This improves an earlier bound of O(1.6181n) established by van Kreveld, Löffler and Pach (2012), and almost matches the current best lower bound of Ω(1.5028n) due to the same authors. Given a planar straight-line graph G with n vertices, we also show how to compute efficiently the number of convex polygons in G.
We identify the asymptotic probability of a configuration model CMn(d) producing a connected graph within its critical window for connectivity that is identified by the number of vertices of degree 1 and 2, as well as the expected degree. In this window, the probability that the graph is connected converges to a non-trivial value, and the size of the complement of the giant component weakly converges to a finite random variable. Under a finite second moment condition we also derive the asymptotics of the connectivity probability conditioned on simplicity, from which follows the asymptotic number of simple connected graphs with a prescribed degree sequence.
Let A and B be disjoint sets, of size 2k, of vertices of Qn, the n-dimensional hypercube. In 1997, Bollobás and Leader proved that there must be (n − k)2k edge-disjoint paths between such A and B. They conjectured that when A is a down-set and B is an up-set, these paths may be chosen to be directed (that is, the vertices in the path form a chain). We use a novel type of compression argument to prove stronger versions of these conjectures, namely that the largest number of edge-disjoint paths between a down-set A and an up-set B is the same as the largest number of directed edge-disjoint paths between A and B. Bollobás and Leader made an analogous conjecture for vertex-disjoint paths, and we prove a strengthening of this by similar methods. We also prove similar results for all other sizes of A and B.
A class of graphs is called bridge-addable if, for each graph in the class and each pair u and v of vertices in different components, the graph obtained by adding an edge joining u and v must also be in the class. The concept was introduced in 2005 by McDiarmid, Steger and Welsh, who showed that, for a random graph sampled uniformly from such a class, the probability that it is connected is at least 1/e.
We generalize this and related results to bridge-addable classes with edge-weights which have an edge-expansion property. Here, a graph is sampled with probability proportional to the product of its edge-weights. We obtain for example lower bounds for the probability of connectedness of a graph sampled uniformly from a relatively bridge-addable class of graphs, where some but not necessarily all of the possible bridges are allowed to be introduced. Furthermore, we investigate whether these bounds are tight, and in particular give detailed results about random forests in complete balanced multipartite graphs.
We consider two notions describing how one finite graph may be larger than another. Using them, we prove several theorems for such pairs that compare the number of spanning trees, the return probabilities of random walks, and the number of independent sets, among other combinatorial quantities. Our methods involve inequalities for determinants, for traces of functions of operators, and for entropy.
Computer or communication networks are so designed that they do not easily get disrupted under external attack. Moreover, they are easily reconstructed when they do get disrupted. These desirable properties of networks can be measured by various parameters, such as connectivity, toughness and scattering number. Among these parameters, the isolated scattering number is a comparatively better parameter to measure the vulnerability of networks. In this paper we first prove that for split graphs, this number can be computed in polynomial time. Then we determine the isolated scattering number of the Cartesian product and the Kronecker product of special graphs and special permutation graphs.
Given a family of r-uniform hypergraphs ${\cal F}$ (or r-graphs for brevity), the Turán number ex(n,${\cal F})$ of ${\cal F}$ is the maximum number of edges in an r-graph on n vertices that does not contain any member of ${\cal F}$. A pair {u,v} is covered in a hypergraph G if some edge of G contains {u, v}. Given an r-graph F and a positive integer p ⩾ n(F), where n(F) denotes the number of vertices in F, let HFp denote the r-graph obtained as follows. Label the vertices of F as v1,. . .,vn(F). Add new vertices vn(F)+1,. . .,vp. For each pair of vertices vi, vj not covered in F, add a set Bi,j of r − 2 new vertices and the edge {vi, vj} ∪ Bi,j, where the Bi,j are pairwise disjoint over all such pairs {i, j}. We call HFp the expanded p-clique with an embedded F. For a relatively large family of F, we show that for all sufficiently large n, ex(n,HFp) = |Tr(n, p − 1)|, where Tr(n, p − 1) is the balanced complete (p − 1)-partite r-graph on n vertices. We also establish structural stability of near-extremal graphs. Our results generalize or strengthen several earlier results and provide a class of hypergraphs for which the Turán number is exactly determined (for large n).
Paolo Aluffi, inspired by an algebro-geometric problem, asked when the Kirchhoff polynomial of a graph is in the Jacobian ideal of the Kirchhoff polynomial of the same graph with one edge deleted. We give some results on which graph–edge pairs have this property. In particular, we show that multiple edges can be reduced to double edges, we characterize which edges of wheel graphs satisfy the property, we consider a stronger condition which guarantees the property for any parallel join, and we find a class of series–parallel graphs with the property.
We prove an inequality for functions on the discrete cube {0, 1}n extending the edge-isoperimetric inequality for sets. This inequality turns out to be equivalent to the following claim about random walks on the cube: subcubes maximize ‘mean first exit time’ among all subsets of the cube of the same cardinality.