To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We investigate the asymptotic version of the Erdős–Ko–Rado theorem for the random k-uniform hypergraph $\mathcal{H}$k(n, p). For 2⩽k(n) ⩽ n/2, let $N=\binom{n}k$ and $D=\binom{n-k}k$. We show that with probability tending to 1 as n → ∞, the largest intersecting subhypergraph of $\mathcal{H}$ has size
This lower bound on p is asymptotically best possible for k = Θ(n). For this range of k and p, we are able to show stability as well.
A different behaviour occurs when k = o(n). In this case, the lower bound on p is almost optimal. Further, for the small interval D−1 ≪ p ⩽ (n/k)1−ϵD−1, the largest intersecting subhypergraph of $\mathcal{H}$k(n, p) has size Θ(ln(pD)ND−1), provided that $k \gg \sqrt{n \ln n}$.
Together with previous work of Balogh, Bohman and Mubayi, these results settle the asymptotic size of the largest intersecting family in $\mathcal{H}$k, for essentially all values of p and k.
A permutoid is a set of partial permutations that contains the identity and is such that partial compositions, when defined, have at most one extension in the set. In 2004 Peter Cameron conjectured that there can exist no algorithm that determines whether or not a permutoid based on a finite set can be completed to a finite permutation group. In this note we prove Cameron’s conjecture by relating it to our recent work on the profinite triviality problem for finitely presented groups. We also prove that the existence problem for finite developments of rigid pseudogroups is unsolvable. In an appendix, Steinberg recasts these results in terms of inverse semigroups.
The jaggedness of an order ideal $I$ in a poset $P$ is the number of maximal elements in $I$ plus the number of minimal elements of $P$ not in $I$. A probability distribution on the set of order ideals of $P$ is toggle-symmetric if for every $p\in P$, the probability that $p$ is maximal in $I$ equals the probability that $p$ is minimal not in $I$. In this paper, we prove a formula for the expected jaggedness of an order ideal of $P$ under any toggle-symmetric probability distribution when $P$ is the poset of boxes in a skew Young diagram. Our result extends the main combinatorial theorem of Chan–López–Pflueger–Teixidor [Trans. Amer. Math. Soc., forthcoming. 2015, arXiv:1506.00516], who used an expected jaggedness computation as a key ingredient to prove an algebro-geometric formula; and it has applications to homomesies, in the sense of Propp–Roby, of the antichain cardinality statistic for order ideals in partially ordered sets.
Let $\mathbb{K}$ be a field and S = ${\mathbb{K}}$[x1, . . ., xn] be the polynomial ring in n variables over the field $\mathbb{K}$. For every monomial ideal I ⊂ S, we provide a recursive formula to determine a lower bound for the Stanley depth of S/I. We use this formula to prove the inequality sdepth(S/I) ≥ size(I) for a particular class of monomial ideals.
In 2005, Knutson–Vakil conjectured a puzzle rule for equivariant $K$-theory of Grassmannians. We resolve this conjecture. After giving a correction, we establish a modified rule by combinatorially connecting it to the authors’ recently proved tableau rule for the same Schubert calculus problem.
To a pair $P$ and $Q$ of finite posets we attach the toric ring $K[P,Q]$ whose generators are in bijection to the isotone maps from $P$ to $Q$. This class of algebras, called isotonian, are natural generalizations of the so-called Hibi rings. We determine the Krull dimension of these algebras and for particular classes of posets $P$ and $Q$ we show that $K[P,Q]$ is normal and that their defining ideal admits a quadratic Gröbner basis.
Let $\mathcal F$ ⊂ 2[n] be a family of subsets. The diameter of $\mathcal F$ is the maximum of the size of symmetric differences among pairs of members of $\mathcal F$. In 1966 Kleitman determined the maximum of |$\mathcal F$| for fixed diameter. However, this important classical result lacked a characterization of the families meeting the bound. This is remedied in the present paper, where a best possible stability result is established as well.
In Section 4 we introduce a ‘parity trick’ that provides an easy way of deducing the odd case from the even case in both Kleitman's original theorem and its stability version.
In this paper, we give an explicit construction of a quasi-idempotent in the $q$-rook monoid algebra $R_{n}(q)$ and show that it generates the whole annihilator of the tensor space $U^{\otimes n}$ in $R_{n}(q)$.
The unconstrained exponential family of random graphs assumes no prior knowledge of the graph before sampling, but it is natural to consider situations where partial information about the graph is known, for example the total number of edges. What does a typical random graph look like, if drawn from an exponential model subject to such constraints? Will there be a similar phase transition phenomenon (as one varies the parameters) as that which occurs in the unconstrained exponential model? We present some general results for this constrained model and then apply them to obtain concrete answers in the edge-triangle model with fixed density of edges.
We consider a marking procedure of the vertices of a tree where each vertex is marked independently from the others with a probability that depends only on its out-degree. We prove that a critical Galton–Watson tree conditioned on having a large number of marked vertices converges in distribution to the associated size-biased tree. We then apply this result to give the limit in distribution of a critical Galton–Watson tree conditioned on having a large number of protected nodes.
In this paper we study the treewidth of the random geometric graph, obtained by dropping n points onto the square [0,√n]2 and connecting pairs of points by an edge if their distance is at most r=r(n). We prove a conjecture of Mitsche and Perarnau (2014) stating that, with probability going to 1 as n→∞, the treewidth of the random geometric graph is 𝜣(r√n) when lim inf r>rc, where rc is the critical radius for the appearance of the giant component. The proof makes use of a comparison to standard bond percolation and with a little bit of extra work we are also able to show that, with probability tending to 1 as k→∞, the treewidth of the graph we obtain by retaining each edge of the k×k grid with probability p is 𝜣(k) if p>½ and 𝜣(√log k) if p<½.
A class of games for finding a leader among a group of candidates is studied in detail. This class covers games based on coin tossing and rock-paper-scissors as special cases and its complexity exhibits similar stochastic behaviors: either of logarithmic mean and bounded variance or of exponential mean and exponential variance. Many applications are also discussed.
We prove nonuniversality results for first-passage percolation on the configuration model with independent and identically distributed (i.i.d.) degrees having infinite variance. We focus on the weight of the optimal path between two uniform vertices. Depending on the properties of the weight distribution, we use an example-based approach and show that rather different behaviours are possible. When the weights are almost surely larger than a constant, the weight and number of edges in the graph grow proportionally to log log n, as for the graph distances. On the other hand, when the continuous-time branching process describing the first-passage percolation exploration through the graph reaches infinitely many vertices in finite time, the weight converges to the sum of two i.i.d. random variables representing the explosion times of the continuous-time processes started from the two sources. This nonuniversality is in sharp contrast to the setting where the degree sequence has a finite variance, Bhamidi et al. (2012).
We characterise the elements of the (maximum) idempotent-generated subsemigroup of the Kauffman monoid in terms of combinatorial data associated with certain normal forms. We also calculate the smallest size of a generating set and idempotent generating set.
A point process is R-dependent if it behaves independently beyond the minimum distance R. In this paper we investigate uniform positive lower bounds on the avoidance functions of R-dependent simple point processes with a common intensity. Intensities with such bounds are characterised by the existence of Shearer's point process, the unique R-dependent and R-hard-core point process with a given intensity. We also present several extensions of the Lovász local lemma, a sufficient condition on the intensity and R to guarantee the existence of Shearer's point process and exponential lower bounds. Shearer's point process shares a combinatorial structure with the hard-sphere model with radius R, the unique R-hard-core Markov point process. Bounds from the Lovász local lemma convert into lower bounds on the radius of convergence of a high-temperature cluster expansion of the hard-sphere model. This recovers a classic result of Ruelle (1969) on the uniqueness of the Gibbs measure of the hard-sphere model via an inductive approach of Dobrushin (1996).
In Ramsey theory one wishes to know how large a collection of objects can be while avoiding a particular substructure. A problem of recent interest has been to study how large subsets of the natural numbers can be while avoiding three-term geometric progressions. Building on recent progress on this problem, we consider the analogous problem over quadratic number fields. We first construct high-density subsets of the algebraic integers of an imaginary quadratic number field that avoid three-term geometric progressions. When unique factorization fails, or over a real quadratic number field, we instead look at subsets of ideals of the ring of integers. Our approach here is to construct sets ‘greedily’, a generalization of the greedy set of rational integers considered by Rankin. We then describe the densities of these sets in terms of values of the Dedekind zeta function. Next, we consider geometric-progression-free sets with large upper density. We generalize an argument by Riddell to obtain upper bounds for the upper density of geometric-progression-free subsets, and construct sets avoiding geometric progressions with high upper density to obtain lower bounds for the supremum of the upper density of all such subsets. Both arguments depend critically on the elements with small norm in the ring of integers.
For a graph $G$, let $f(G)$ denote the maximum number of edges in a bipartite subgraph of $G$. For an integer $m$ and for a fixed graph $H$, let $f(m,H)$ denote the minimum possible cardinality of $f(G)$ as $G$ ranges over all graphs on $m$ edges that contain no copy of $H$. We give a general lower bound for $f(m,H)$ which extends a result of Erdős and Lovász and we study this function for any bipartite graph $H$ with maximum degree at most $t\geq 2$ on one side.
Let [n]r be the complete r-partite hypergraph with vertex classes of size n. It is an easy exercise to show that every set of more than (k−1)nr−1 edges in [n]r contains a matching of size k. We conjecture the following rainbow version of this observation: if F1,F2,. . .,Fk ⊆ [n]r are of size larger than (k−1)nr−1 then there exists a rainbow matching, that is, a choice of disjoint edges fi ∈ Fi. We prove this conjecture for r=2 and r=3.
We study the relationship between a $\unicode[STIX]{x1D705}$-Souslin tree $T$ and its reduced powers $T^{\unicode[STIX]{x1D703}}/{\mathcal{U}}$.
Previous works addressed this problem from the viewpoint of a single power $\unicode[STIX]{x1D703}$, whereas here, tools are developed for controlling different powers simultaneously. As a sample corollary, we obtain the consistency of an $\aleph _{6}$-Souslin tree $T$ and a sequence of uniform ultrafilters $\langle {\mathcal{U}}_{n}\mid n<6\rangle$ such that $T^{\aleph _{n}}/{\mathcal{U}}_{n}$ is $\aleph _{6}$-Aronszajn if and only if $n<6$ is not a prime number.
This paper is the first application of the microscopic approach to Souslin-tree construction, recently introduced by the authors. A major component here is devising a method for constructing trees with a prescribed combination of freeness degree and ascent-path characteristics.