We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A uniform hypergraph H is called k-Ramsey for a hypergraph F if, no matter how one colours the edges of H with k colours, there is always a monochromatic copy of F. We say that H is k-Ramsey-minimal for F if H is k-Ramsey for F but every proper subhypergraph of H is not. Burr, Erdős and Lovasz studied various parameters of Ramsey-minimal graphs. In this paper we initiate the study of minimum degrees and codegrees of Ramsey-minimal 3-uniform hypergraphs. We show that the smallest minimum vertex degree over all k-Ramsey-minimal 3-uniform hypergraphs for Kt(3) is exponential in some polynomial in k and t. We also study the smallest possible minimum codegree over 2-Ramsey-minimal 3-uniform hypergraphs.
In a recent paper, Baxter and Zeilberger showed that the two most important Mahonian statistics, the inversion number and the major index, are asymptotically independently normally distributed on permutations. In another recent paper, Canfield, Janson and Zeilberger proved the result, already known to statisticians, that the Mahonian distribution is asymptotically normal on words. This leaves one question unanswered: What, asymptotically, is the joint distribution of the inversion number and the major index on words? We answer this question by establishing convergence to a bivariate normal distribution.
Zhou and Feng [‘On symmetric graphs of valency five’, Discrete Math.310 (2010), 1725–1732] proved that all connected pentavalent 1-transitive Cayley graphs of finite nonabelian simple groups are normal. We construct an example of a nonnormal 2-arc transitive pentavalent symmetric Cayley graph on the alternating group $\text{A}_{39}$. Furthermore, we show that the full automorphism group of this graph is isomorphic to the alternating group $\text{A}_{40}$.
We continue our study of intermediate sums over polyhedra, interpolating between integrals and discrete sums, which were introduced by Barvinok [Computing the Ehrhart quasi-polynomial of a rational simplex. Math. Comp. 75 (2006), 1449–1466]. By well-known decompositions, it is sufficient to consider the case of affine cones $s+\mathfrak{c}$, where $s$ is an arbitrary real vertex and $\mathfrak{c}$ is a rational polyhedral cone. For a given rational subspace $L$, we define the intermediate generating functions $S^{L}(s+\mathfrak{c})(\unicode[STIX]{x1D709})$ by integrating an exponential function over all lattice slices of the affine cone $s+\mathfrak{c}$ parallel to the subspace $L$ and summing up the integrals. We expose the bidegree structure in parameters $s$ and $\unicode[STIX]{x1D709}$, which was implicitly used in the algorithms in our papers [Computation of the highest coefficients of weighted Ehrhart quasi-polynomials of rational polyhedra. Found. Comput. Math.12 (2012), 435–469] and [Intermediate sums on polyhedra: computation and real Ehrhart theory. Mathematika59 (2013), 1–22]. The bidegree structure is key to a new proof for the Baldoni–Berline–Vergne approximation theorem for discrete generating functions [Local Euler–Maclaurin expansion of Barvinok valuations and Ehrhart coefficients of rational polytopes. Contemp. Math.452 (2008), 15–33], using the Fourier analysis with respect to the parameter $s$ and a continuity argument. Our study also enables a forthcoming paper, in which we study intermediate sums over multi-parameter families of polytopes.
An orthogonal coloring of the two-dimensional unit sphere $\mathbb{S}^{2}$, is a partition of $\mathbb{S}^{2}$ into parts such that no part contains a pair of orthogonal points: that is, a pair of points at spherical distance ${\it\pi}/2$ apart. It is a well-known result that an orthogonal coloring of $\mathbb{S}^{2}$ requires at least four parts, and orthogonal colorings with exactly four parts can easily be constructed from a regular octahedron centered at the origin. An intriguing question is whether or not every orthogonal 4-coloring of $\mathbb{S}^{2}$ is such an octahedral coloring. In this paper, we address this question and show that if every color class has a non-empty interior, then the coloring is octahedral. Some related results are also given.
A $(d-1)$-dimensional simplicial complex is called balanced if its underlying graph admits a proper $d$-coloring. We show that many well-known face enumeration results have natural balanced analogs (or at least conjectural analogs). Specifically, we prove the balanced analog of the celebrated lower bound theorem (LBT) for normal pseudomanifolds and characterize the case of equality; we introduce and characterize the balanced analog of the Walkup class; and we propose the balanced analog of the generalized lower bound conjecture (GLBC) and establish some related results. We close with constructions of balanced manifolds with few vertices.
We prove that among all flag triangulations of manifolds of odd dimension $2r-1$, with a sufficient number of vertices, the unique maximizer of the entries of the $f$-, $h$-, $g$- and $\unicode[STIX]{x1D6FE}$-vector is the balanced join of $r$ cycles. Our proof uses methods from extremal graph theory.
A k-uniform hypergraph H = (V, E) is called ℓ-orientable if there is an assignment of each edge e ∈ E to one of its vertices v ∈ e such that no vertex is assigned more than ℓ edges. Let Hn,m,k be a hypergraph, drawn uniformly at random from the set of all k-uniform hypergraphs with n vertices and m edges. In this paper we establish the threshold for the ℓ-orientability of Hn,m,k for all k ⩾ 3 and ℓ ⩾ 2, that is, we determine a critical quantity c*k,ℓ such that with probability 1 − o(1) the graph Hn,cn,k has an ℓ-orientation if c < c*k,ℓ, but fails to do so if c > c*k,ℓ.
Our result has various applications, including sharp load thresholds for cuckoo hashing, load balancing with guaranteed maximum load, and massive parallel access to hard disk arrays.
For positive integers n and q and a monotone graph property $\mathcal{A}$, we consider the two-player, perfect information game WC(n, q, $\mathcal{A}$), which is defined as follows. The game proceeds in rounds. In each round, the first player, called Waiter, offers the second player, called Client, q + 1 edges of the complete graph Kn which have not been offered previously. Client then chooses one of these edges which he keeps and the remaining q edges go back to Waiter. If, at the end of the game, the graph which consists of the edges chosen by Client satisfies the property $\mathcal{A}$, then Waiter is declared the winner; otherwise Client wins the game. In this paper we study such games (also known as Picker–Chooser games) for a variety of natural graph-theoretic parameters, such as the size of a largest component or the length of a longest cycle. In particular, we describe a phase transition type phenomenon which occurs when the parameter q is close to n and is reminiscent of phase transition phenomena in random graphs. Namely, we prove that if q ⩾ (1 + ϵ)n, then Client can avoid components of order cϵ−2 ln n for some absolute constant c > 0, whereas for q ⩽ (1 − ϵ)n, Waiter can force a giant, linearly sized component in Client's graph. In the second part of the paper, we prove that Waiter can force Client's graph to be pancyclic for every q ⩽ cn, where c > 0 is an appropriate constant. Note that this behaviour is in stark contrast to the threshold for pancyclicity and Hamiltonicity of random graphs.
How many strict local maxima can a real quadratic function on {0, 1}n have? Holzman conjectured a maximum of $\binom{n }{ \lfloor n/2 \rfloor}$. The aim of this paper is to prove this conjecture. Our approach is via a generalization of Sperner's theorem that may be of independent interest.
Answering a question raised by Dudek and Prałat, we show that if pn → ∞, w.h.p., whenever G = G(n, p) is 2-edge-coloured there is a monochromatic path of length (2/3 + o(1))n. This result is optimal in the sense that 2/3 cannot be replaced by a larger constant.
As part of the proof we obtain the following result. Given a graph G on n vertices with at least $(1-\varepsilon)\binom{n}{2}$ edges, whenever G is 2-edge-coloured, there is a monochromatic path of length at least $(2/3 - 110\sqrt{\varepsilon})n$. This is an extension of the classical result by Gerencsér and Gyárfás which says that whenever Kn is 2-coloured there is a monochromatic path of length at least 2n/3.
We consider a threshold epidemic model on a clustered random graph model obtained from local transformations in an alternating branching process that approximates a bipartite graph. In other words, our epidemic model is such that an individual becomes infected as soon as the proportion of his/her infected neighbors exceeds the threshold q of the epidemic. In our random graph model, each individual can belong to several communities. The distributions for the community sizes and the number of communities an individual belongs to are arbitrary. We consider the case where the epidemic starts from a single individual, and we prove a phase transition (when the parameter q of the model varies) for the appearance of a cascade, i.e. when the epidemic can be propagated to an infinite part of the population. More precisely, we show that our epidemic is entirely described by a multi-type (and alternating) branching process, and then we apply Sevastyanov's theorem about the phase transition of multi-type Galton-Watson branching processes. In addition, we compute the entries of the mean progeny matrix corresponding to the epidemic. The phase transition for the contagion is given in terms of the largest eigenvalue of this matrix.
We give an exponential tail approximation for the extinction time of a subcritical multitype branching process arising from the SIR epidemic model on a random graph with given degrees, where the type corresponds to the vertex degree. As a corollary we obtain a Gumbel limit law for the extinction time, when beginning with a large population. Our contribution is to allow countably many types (this corresponds to unbounded degrees in the random graph epidemic model, as the number of vertices tends to∞). We only require a second moment for the offspring-type distribution featuring in our model.
In this paper we give an extension of the results of the generalized waiting time problem given by El-Desouky and Hussen (1990). An urn contains m types of balls of unequal numbers, and balls are drawn with replacement until first duplication. In the case of finite memory of order k, let ni be the number of type i, i = 1, 2, …, m. The probability of success pi = ni/N, i = 1, 2, …, m, where ni is a positive integer and Let Ym,k be the number of drawings required until first duplication. We obtain some new expressions of the probability function, in terms of Stirling numbers, symmetric polynomials, and generalized harmonic numbers. Moreover, some special cases are investigated. Finally, some important new combinatorial identities are obtained.
Motivated by a problem of characterising a family of Cayley graphs, we study a class of finite groups $G$ which behave similarly to elementary abelian $p$-groups with $p$ prime, that is, there exists a subgroup $N$ such that all elements of $G\setminus N$ are conjugate or inverse-conjugate under $\mathsf{Aut}(G)$. It is shown that such groups correspond to complete multipartite graphs which are normal edge-transitive Cayley graphs.
We prove the unimodality of some coloured $q$-Eulerian polynomials, which involve the flag excedances, the major index and the fixed points on coloured permutation groups, via two recurrence formulas. In particular, we confirm a recent conjecture of Mongelli about the unimodality of the flag excedances over type B derangements. Furthermore, we find the coloured version of Gessel’s hook factorisation, which enables us to interpret these two recurrences combinatorially. We also provide a combinatorial proof of a symmetric and unimodal expansion for the coloured derangement polynomial, which was first established by Shin and Zeng using continued fractions.
Li et al. [‘On finite self-complementary metacirculants’, J. Algebraic Combin.40 (2014), 1135–1144] proved that the automorphism group of a self-complementary metacirculant is either soluble or has $\text{A}_{5}$ as the only insoluble composition factor, and gave a construction of such graphs with insoluble automorphism groups (which are the first examples of self-complementary graphs with this property). In this paper, we will prove that each simple group is a subgroup (so is a section) of the automorphism groups of infinitely many self-complementary vertex-transitive graphs. The proof involves a construction of such graphs. We will also determine all simple sections of the automorphism groups of self-complementary vertex-transitive graphs of $4$-power-free order.
Let $b_{3,5}(n)$ denote the number of partitions of $n$ into parts that are not multiples of 3 or 5. We establish several infinite families of congruences modulo 2 for $b_{3,5}(n)$. In the process, we also prove numerous parity results for broken 7-diamond partitions.
For each of the notions of hypergraph quasirandomness that have been studied, we identify a large class of hypergraphs F so that every quasirandom hypergraph H admits a perfect F-packing. An informal statement of a special case of our general result for 3-uniform hypergraphs is as follows. Fix an integer r ⩾ 4 and 0 < p < 1. Suppose that H is an n-vertex triple system with r|n and the following two properties:
• for every graph G with V(G) = V(H), at least p proportion of the triangles in G are also edges of H,
• for every vertex x of H, the link graph of x is a quasirandom graph with density at least p.
Then H has a perfect Kr(3)-packing. Moreover, we show that neither of the hypotheses above can be weakened, so in this sense our result is tight. A similar conclusion for this special case can be proved by Keevash's Hypergraph Blow-up Lemma, with a slightly stronger hypothesis on H.