To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Inspired by the recent work of M. Nakasuji, O. Phuksuwan and Y. Yamasaki, we combine interpolated multiple zeta values and Schur multiple zeta values into one object, which we call interpolated Schur multiple zeta values. Our main result will be a Jacobi–Trudi formula for a certain class of these new objects. This generalizes an analogous result for Schur multiple zeta values and implies algebraic relations between interpolated multiple zeta values.
We provide lower bounds for $p$-adic valuations of multisums of factorial ratios which satisfy an Apéry-like recurrence relation: these include Apéry, Domb and Franel numbers, the numbers of abelian squares over a finite alphabet, and constant terms of powers of certain Laurent polynomials. In particular, we prove Beukers’ conjectures on the $p$-adic valuation of Apéry numbers. Furthermore, we give an effective criterion for a sequence of factorial ratios to satisfy the $p$-Lucas property for almost all primes $p$.
We present an abstract framework for the axiomatic study of diagram algebras. Algebras that fit this framework possess analogues of both the Murphy and seminormal bases of the Hecke algebras of the symmetric groups. We show that the transition matrix between these bases is dominance unitriangular. We construct analogues of the skew Specht modules in this setting. This allows us to propose a natural tableaux theoretic framework in which to study the infamous Kronecker problem.
A family of subsets of {1,. . .,n} is called intersecting if any two of its sets intersect. A classical result in extremal combinatorics due to Erdős, Ko and Rado determines the maximum size of an intersecting family of k-subsets of {1,. . .,n}. In this paper we study the following problem: How many intersecting families of k-subsets of {1,. . .,n} are there? Improving a result of Balogh, Das, Delcourt, Liu and Sharifzadeh, we determine this quantity asymptotically for n ≥ 2k+2+2$\sqrt{k\log k}$ and k → ∞. Moreover, under the same assumptions we also determine asymptotically the number of non-trivial intersecting families, that is, intersecting families for which the intersection of all sets is empty. We obtain analogous results for pairs of cross-intersecting families.
This paper is part of the ongoing effort to study high-dimensional permutations. We prove the analogue to the Erdős–Szekeres theorem: For every k ≥ 1, every order-nk-dimensional permutation contains a monotone subsequence of length Ωk($\sqrt{n}$), and this is tight. On the other hand, and unlike the classical case, the longest monotone subsequence in a random k-dimensional permutation of order n is asymptotically almost surely Θk(nk/(k+1)).
Assume that the edges of the complete graph Kn are given independent uniform [0, 1] weights. We consider the expected minimum total weight μk of k ⩽ 2 edge-disjoint spanning trees. When k is large we show that μk ≈ k2. Most of the paper is concerned with the case k = 2. We show that m2 tends to an explicitly defined constant and that μ2 ≈ 4.1704288. . . .
This paper deals with a combinatorial problem concerning colourings of uniform hypergraphs with large girth. We prove that if H is an n-uniform non-r-colourable simple hypergraph then its maximum edge degree Δ(H) satisfies the inequality
As an application of our probabilistic technique we establish a lower bound for the classical van der Waerden number W(n, r), the minimum natural N such that in an arbitrary colouring of the set of integers {1,. . .,N} with r colours there exists a monochromatic arithmetic progression of length n. We prove that
Let $G$ be a simple connected graph with $n$ vertices and $m$ edges and $d_{1}\geq d_{2}\geq \cdots \geq d_{n}>0$ its sequence of vertex degrees. If $\unicode[STIX]{x1D707}_{1}\geq \unicode[STIX]{x1D707}_{2}\geq \cdots \geq \unicode[STIX]{x1D707}_{n-1}>\unicode[STIX]{x1D707}_{n}=0$ are the Laplacian eigenvalues of $G$, then the Kirchhoff index of $G$ is $\mathit{Kf}(G)=n\sum _{i=1}^{n-1}\unicode[STIX]{x1D707}_{i}^{-1}$. We prove some new lower bounds for $\mathit{Kf}(G)$ in terms of some of the parameters $\unicode[STIX]{x1D6E5}=d_{1}$, $\unicode[STIX]{x1D6E5}_{2}=d_{2}$, $\unicode[STIX]{x1D6E5}_{3}=d_{3}$, $\unicode[STIX]{x1D6FF}=d_{n}$, $\unicode[STIX]{x1D6FF}_{2}=d_{n-1}$ and the topological index $\mathit{NK}=\prod _{i=1}^{n}d_{i}$.
We prove that Boolean functions on $S_{n}$, whose Fourier transform is highly concentrated on irreducible representations indexed by partitions of $n$ whose largest part has size at least $n-t$, are close to being unions of cosets of stabilizers of $t$-tuples. We also obtain an edge-isoperimetric inequality for the transposition graph on $S_{n}$ which is asymptotically sharp for subsets of $S_{n}$ of size $n!/\text{poly}(n)$, using eigenvalue techniques. We then combine these two results to obtain a sharp edge-isoperimetric inequality for subsets of $S_{n}$ of size $(n-t)!$, where $n$ is large compared to $t$, confirming a conjecture of Ben Efraim in these cases.
Bollobás and Scott (Random Struct. Alg.21 (2002) 414–430) asked for conditions that guarantee a bisection of a graph with m edges in which each class has at most (1/4+o(1))m edges. We demonstrate that cycles of length 4 play an important role for this question. Let G be a graph with m edges, minimum degree δ, and containing no cycle of length 4. We show that if (i) G is 2-connected, or (ii) δ ⩾ 3, or (iii) δ ⩾ 2 and the girth of G is at least 5, then G admits a bisection in which each class has at most (1/4+o(1))m edges. We show that each of these conditions are best possible. On the other hand, a construction by Alon, Bollobás, Krivelevich and Sudakov shows that for infinitely many m there exists a graph with m edges and girth at least 5 for which any bisection has at least (1/4−o(1))m edges in one of the two classes.
The classification of flag-transitive generalized quadrangles is a long-standing open problem at the interface of finite geometry and permutation group theory. Given that all known flag-transitive generalized quadrangles are also point-primitive (up to point–line duality), it is likewise natural to seek a classification of the point-primitive examples. Working toward this aim, we are led to investigate generalized quadrangles that admit a collineation group $G$ preserving a Cartesian product decomposition of the set of points. It is shown that, under a generic assumption on $G$, the number of factors of such a Cartesian product can be at most four. This result is then used to treat various types of primitive and quasiprimitive point actions. In particular, it is shown that $G$ cannot have holomorph compound O’Nan–Scott type. Our arguments also pose purely group-theoretic questions about conjugacy classes in nonabelian finite simple groups and fixities of primitive permutation groups.
We consider community detection in degree-corrected stochastic block models. We propose a spectral clustering algorithm based on a suitably normalized adjacency matrix. We show that this algorithm consistently recovers the block membership of all but a vanishing fraction of nodes, in the regime where the lowest degree is of order log(n) or higher. Recovery succeeds even for very heterogeneous degree distributions. The algorithm does not rely on parameters as input. In particular, it does not need to know the number of communities.
A random binary search tree grown from the uniformly random permutation of [n] is studied. We analyze the exact and asymptotic counts of vertices by rank, the distance from the set of leaves. The asymptotic fraction ck of vertices of a fixed rank k ≥ 0 is shown to decay exponentially with k. We prove that the ranks of the uniformly random, fixed size sample of vertices are asymptotically independent, each having the distribution {ck}. Notoriously hard to compute, the exact fractions ck have been determined for k ≤ 3 only. We present a shortcut enabling us to compute c4 and c5 as well; both are ratios of enormous integers, the denominator of c5 being 274 digits long. Prompted by the data, we prove that, in sharp contrast, the largest prime divisor of the denominator of ck is at most 2k+1 + 1. We conjecture that, in fact, the prime divisors of every denominator for k > 1 form a single interval, from 2 to the largest prime not exceeding 2k+1 + 1.
We propose two distance-based topological indices (level index and Gini index) as measures of disparity within a single tree and within tree classes. The level index and the Gini index of a single tree are measures of balance within the tree. On the other hand, the Gini index for a class of random trees can be used as a comparative measure of balance between tree classes. We establish a general expression for the level index of a tree. We compute the Gini index for two random classes of caterpillar trees and see that a random multinomial model of trees with finite height has a countable number of limits in [0, ⅓], whereas a model with independent level numbers fills the spectrum (0, ⅓].
In this paper we compute the absorbing time Tn of an n-dimensional discrete-time Markov chain comprising n components, each with an absorbing state and evolving in mutual exclusion. We show that the random absorbing time Tn is well approximated by a deterministic time tn that is the first time when a fluid approximation of the chain approaches the absorbing state at a distance 1 / n. We provide an asymptotic expansion of tn that uses the spectral decomposition of the kernel of the chain as well as the asymptotic distribution of Tn, relying on extreme values theory. We show the applicability of this approach with three different problems: the coupon collector, the erasure channel lifetime, and the coupling times of random walks in high-dimensional spaces.
A cutset is a non-empty finite subset of ℤd which is both connected and co-connected. A cutset is odd if its vertex boundary lies in the odd bipartition class of ℤd. Peled [18] suggested that the number of odd cutsets which contain the origin and have n boundary edges may be of order eΘ(n/d) as d → ∞, much smaller than the number of general cutsets, which was shown by Lebowitz and Mazel [15] to be of order dΘ(n/d). In this paper, we verify this by showing that the number of such odd cutsets is (2+o(1))n/2d.
Recently there has been much interest in studying random graph analogues of well-known classical results in extremal graph theory. Here we follow this trend and investigate the structure of triangle-free subgraphs of G(n, p) with high minimum degree. We prove that asymptotically almost surely each triangle-free spanning subgraph of G(n, p) with minimum degree at least (2/5 + o(1))pn is (p−1n)-close to bipartite, and each spanning triangle-free subgraph of G(n, p) with minimum degree at least (1/3 + ϵ)pn is O(p−1n)-close to r-partite for some r = r(ϵ). These are random graph analogues of a result by Andrásfai, Erdős and Sós (Discrete Math.8 (1974), 205–218), and a result by Thomassen (Combinatorica22 (2002), 591–596). We also show that our results are best possible up to a constant factor.
We almost completely solve a number of problems related to a concept called majority colouring recently studied by Kreutzer, Oum, Seymour, van der Zypen and Wood. They raised the problem of determining, for a natural number k, the smallest number m = m(k) such that every digraph can be coloured with m colours where each vertex has the same colour as at most a 1/k proportion of its out-neighbours. We show that m(k) ∈ {2k − 1,2k}. We also prove a result supporting the conjecture that m(2) = 3. Moreover, we prove similar results for a more general concept called majority choosability.
We consider the problem of minimizing the number of edges that are contained in triangles, among n-vertex graphs with a given number of edges. For sufficiently large n, we prove an exact formula for this minimum, which partially resolves a conjecture of Füredi and Maleki.
Let [An,k]n,k⩾0 be an infinite lower triangular array satisfying the recurrence
for n ⩾ 1 and k ⩾ 0, where A0,0 = 1, A0,k = Ak,–1 = 0 for k > 0. We present some criteria for the log-concavity of rows and strong q-log-convexity of generating functions of rows. Our results can be applied to many well-known triangular arrays, such as the Pascal triangle, the Stirling triangle of the second kind, the Bell triangle, the large Schröder triangle, the Motzkin triangle, and the Catalan triangles of Aigner and Shapiro, in a unified approach. In addition, we prove that the binomial transformation not only preserves the strong q-log-convexity property, but also preserves the strong q-log-concavity property. Finally, we demonstrate that the strong q-log-convexity property is preserved by the Stirling transformation and Whitney transformation of the second kind, which extends some known results for the strong q-log-convexity property.