To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For a skew-symmetrizable cluster algebra ${\mathcal{A}}_{t_{0}}$ with principal coefficients at $t_{0}$, we prove that each seed $\unicode[STIX]{x1D6F4}_{t}$ of ${\mathcal{A}}_{t_{0}}$ is uniquely determined by its $C$-matrix, which was proposed by Fomin and Zelevinsky (Compos. Math. 143 (2007), 112–164) as a conjecture. Our proof is based on the fact that the positivity of cluster variables and sign coherence of $c$-vectors hold for ${\mathcal{A}}_{t_{0}}$, which was actually verified in Gross et al. (Canonical bases for cluster algebras, J. Amer. Math. Soc. 31(2) (2018), 497–608). Further discussion is provided in the sign-skew-symmetric case so as to obtain a weak version of the conjecture in this general case.
A set of points in d-dimensional Euclidean space is almost equidistant if, among any three points of the set, some two are at distance 1. We show that an almost-equidistant set in ℝd has cardinality O(d4/3).
We show that the scenery reconstruction problem on the Boolean hypercube is in general impossible. This is done by using locally biased functions, in which every vertex has a constant fraction of neighbours coloured by 1, and locally stable functions, in which every vertex has a constant fraction of neighbours coloured by its own colour. Our methods are constructive, and also give super-polynomial lower bounds on the number of locally biased and locally stable functions. We further show similar results for ℤn and other graphs, and offer several follow-up questions.
In this paper we derive nonasymptotic upper bounds for the size of reachable sets in random graphs. These bounds are subject to a phase transition phenomenon triggered by the spectral radius of the hazard matrix, a reweighted version of the adjacency matrix. Such bounds are valid for a large class of random graphs, called local positive correlation (LPC) random graphs, displaying local positive correlation. In particular, in our main result we state that the size of reachable sets in the subcritical regime for LPC random graphs is at most of order O(√n), where n is the size of the network, and of order O(n2/3) in the critical regime, where the epidemic thresholds are driven by the size of the spectral radius of the hazard matrix with respect to 1. As a corollary, we also show that such bounds hold for the size of the giant component in inhomogeneous percolation, the SIR model in epidemiology, as well as for the long-term influence of a node in the independent cascade model.
We study the numbers of involutions and their relation to Frobenius–Schur indicators in the groups $\text{SO}^{\pm }(n,q)$ and $\unicode[STIX]{x1D6FA}^{\pm }(n,q)$. Our point of view for this study comes from two motivations. The first is the conjecture that a finite simple group $G$ is strongly real (all elements are conjugate to their inverses by an involution) if and only if it is totally orthogonal (all Frobenius–Schur indicators are 1), and we observe this holds for all finite simple groups $G$ other than the groups $\unicode[STIX]{x1D6FA}^{\pm }(4m,q)$ with $q$ even. We prove computationally that for small $m$ this statement indeed holds for these groups by equating their character degree sums with the number of involutions. We also prove a result on a certain twisted indicator for the groups $\text{SO}^{\pm }(4m+2,q)$ with $q$ odd. Our second motivation is to continue the work of Fulman, Guralnick, and Stanton on generating functions and asymptotics for involutions in classical groups. We extend their work by finding generating functions for the numbers of involutions in $\text{SO}^{\pm }(n,q)$ and $\unicode[STIX]{x1D6FA}^{\pm }(n,q)$ for all $q$, and we use these to compute the asymptotic behavior for the number of involutions in these groups when $q$ is fixed and $n$ grows.
We prove the existence and give constructions of a $(p(k)-1)$-fold perfect resolvable $(v,k,1)$-Mendelsohn design for any integers $v>k\geq 2$ with $v\equiv 1\hspace{0.2em}{\rm mod}\hspace{0.2em}\,k$ such that there exists a finite Frobenius group whose kernel $K$ has order $v$ and whose complement contains an element $\unicode[STIX]{x1D719}$ of order $k$, where $p(k)$ is the least prime factor of $k$. Such a design admits $K\rtimes \langle \unicode[STIX]{x1D719}\rangle$ as a group of automorphisms and is perfect when $k$ is a prime. As an application we prove that for any integer $v=p_{1}^{e_{1}}\cdots p_{t}^{e_{t}}\geq 3$ in prime factorisation and any prime $k$ dividing $p_{i}^{e_{i}}-1$ for $1\leq i\leq t$, there exists a resolvable perfect $(v,k,1)$-Mendelsohn design that admits a Frobenius group as a group of automorphisms. We also prove that, if $k$ is even and divides $p_{i}-1$ for $1\leq i\leq t$, then there are at least $\unicode[STIX]{x1D711}(k)^{t}$ resolvable $(v,k,1)$-Mendelsohn designs that admit a Frobenius group as a group of automorphisms, where $\unicode[STIX]{x1D711}$ is Euler’s totient function.
The goal of property testing is to quickly distinguish between objects which satisfy a property and objects that are ε-far from satisfying the property. There are now several general results in this area which show that natural properties of combinatorial objects can be tested with ‘constant’ query complexity, depending only on ε and the property, and not on the size of the object being tested. The upper bound on the query complexity coming from the proof techniques is often enormous and impractical. It remains a major open problem if better bounds hold.
Maybe surprisingly, for testing with respect to the rectangular distance, we prove there is a universal (not depending on the property), polynomial in 1/ε query complexity bound for two-sided testing hereditary properties of sufficiently large permutations. We further give a nearly linear bound with respect to a closely related metric which also depends on the smallest forbidden subpermutation for the property. Finally, we show that several different permutation metrics of interest are related to the rectangular distance, yielding similar results for testing with respect to these metrics.
We derive an optimal eigenvalue ratio estimate for finite weighted graphs satisfying the curvature-dimension inequality CD(0, ∞). This estimate is independent of the size of the graph and provides a general method to obtain higher-order spectral estimates. The operation of taking Cartesian products is shown to be an efficient way for constructing new weighted graphs satisfying CD(0, ∞). We also discuss a higher-order Cheeger constant-ratio estimate and related topics about expanders.
We define a growing model of random graphs. Given a sequence of non-negative integers {dn}n=0∞ with the property that di≤i, we construct a random graph on countably infinitely many vertices v0, v1… by the following process: vertex vi is connected to a subset of {v0, …, vi−1} of cardinality di chosen uniformly at random. We study the resulting probability space. In particular, we give a new characterization of random graphs, and we also give probabilistic methods for constructing infinite random trees.
Let k ⩾ 3 be a fixed integer. We exactly determine the asymptotic distribution of ln Zk(G(n, m)), where Zk(G(n, m)) is the number of k-colourings of the random graph G(n, m). A crucial observation to this end is that the fluctuations in the number of colourings can be attributed to the fluctuations in the number of small cycles in G(n, m). Our result holds for a wide range of average degrees, and for k exceeding a certain constant k0 it covers all average degrees up to the so-called condensation phase transition.
We develop a method to compute the generating function of the number of vertices inside certain regions of the Uniform Infinite Planar Triangulation (UIPT). The computations are mostly combinatorial in flavour and the main tool is the decomposition of the UIPT into layers, called the skeleton decomposition, introduced by Krikun [20]. In particular, we get explicit formulas for the generating functions of the number of vertices inside hulls (or completed metric balls) centred around the root, and the number of vertices inside geodesic slices of these hulls. We also recover known results about the scaling limit of the volume of hulls previously obtained by Curien and Le Gall by studying the peeling process of the UIPT in [17].
We consider linear preferential attachment trees, and show that they can be regarded as random split trees in the sense of Devroye (1999), although with infinite potential branching. In particular, this applies to the random recursive tree and the standard preferential attachment tree. An application is given to the sum over all pairs of nodes of the common number of ancestors.
This paper studies the combinatorics of lattice congruences of the weak order on a finite Weyl group $W$, using representation theory of the corresponding preprojective algebra $\unicode[STIX]{x1D6F1}$. Natural bijections are constructed between important objects including join-irreducible congruences, join-irreducible (respectively, meet-irreducible) elements of $W$, indecomposable $\unicode[STIX]{x1D70F}$-rigid (respectively, $\unicode[STIX]{x1D70F}^{-}$-rigid) modules and layers of $\unicode[STIX]{x1D6F1}$. The lattice-theoretically natural labelling of the Hasse quiver by join-irreducible elements of $W$ is shown to coincide with the algebraically natural labelling by layers of $\unicode[STIX]{x1D6F1}$. We show that layers of $\unicode[STIX]{x1D6F1}$ are nothing but bricks (or equivalently stones, or 2-spherical modules). The forcing order on join-irreducible elements of $W$ (arising from the study of lattice congruences) is described algebraically in terms of the doubleton extension order. We give a combinatorial description of indecomposable $\unicode[STIX]{x1D70F}^{-}$-rigid modules for type $A$ and $D$.
For fixed integers p and q, let f(n,p,q) denote the minimum number of colours needed to colour all of the edges of the complete graph Kn such that no clique of p vertices spans fewer than q distinct colours. Any edge-colouring with this property is known as a (p,q)-colouring. We construct an explicit (5,5)-colouring that shows that f(n,5,5) ≤ n1/3 + o(1) as n → ∞. This improves upon the best known probabilistic upper bound of O(n1/2) given by Erdős and Gyárfás, and comes close to matching the best known lower bound Ω(n1/3).
We develop a general procedure that finds recursions for statistics counting isomorphic copies of a graph G0 in the common random graph models ${\cal G}$(n,m) and ${\cal G}$(n,p). Our results apply when the average degrees of the random graphs are below the threshold at which each edge is included in a copy of G0. This extends an argument given earlier by the second author for G0=K3 with a more restricted range of average degree. For all strictly balanced subgraphs G0, our results give much information on the distribution of the number of copies of G0 that are not in large ‘clusters’ of copies. The probability that a random graph in ${\cal G}$(n,p) has no copies of G0 is shown to be given asymptotically by the exponential of a power series in n and p, over a fairly wide range of p. A corresponding result is also given for ${\cal G}$(n,m), which gives an asymptotic formula for the number of graphs with n vertices, m edges and no copies of G0, for the applicable range of m. An example is given, computing the asymptotic probability that a random graph has no triangles for p=o(n−7/11) in ${\cal G}$(n,p) and for m=o(n15/11) in ${\cal G}$(n,m), extending results of the second author.
We study the minimum degree necessary to guarantee the existence of perfect and almost-perfect triangle-tilings in an n-vertex graph G with sublinear independence number. In this setting, we show that if δ(G) ≥ n/3 + o(n), then G has a triangle-tiling covering all but at most four vertices. Also, for every r ≥ 5, we asymptotically determine the minimum degree threshold for a perfect triangle-tiling under the additional assumptions that G is Kr-free and n is divisible by 3.
The total distance (or Wiener index) of a connected graph $G$ is the sum of all distances between unordered pairs of vertices of $G$. DeLaViña and Waller [‘Spanning trees with many leaves and average distance’, Electron. J. Combin.15(1) (2008), R33, 14 pp.] conjectured in 2008 that if $G$ has diameter $D>2$ and order $2D+1$, then the total distance of $G$ is at most the total distance of the cycle of the same order. In this note, we prove that this conjecture is true for 2-connected graphs.
By Smith’s theorem, if a cubic graph has a Hamiltonian cycle, then it has a second Hamiltonian cycle. Thomason [‘Hamilton cycles and uniquely edge-colourable graphs’, Ann. Discrete Math.3 (1978), 259–268] gave a simple algorithm to find the second cycle. Thomassen [private communication] observed that if there exists a polynomially bounded algorithm for finding a second Hamiltonian cycle in a cubic cyclically 4-edge connected graph $G$, then there exists a polynomially bounded algorithm for finding a second Hamiltonian cycle in any cubic graph $G$. In this paper we present a class of cyclically 4-edge connected cubic bipartite graphs $G_{i}$ with $16(i+1)$ vertices such that Thomason’s algorithm takes $12(2^{i}-1)+3$ steps to find a second Hamiltonian cycle in $G_{i}$.
We prove that the roots of the chromatic polynomials of planar graphs are dense in the interval between 32/27 and 4, except possibly in a small interval around τ + 2 where τ is the golden ratio. This interval arises due to a classical result of Tutte, which states that the chromatic polynomial of every planar graph takes a positive value at τ + 2. Our results lead us to conjecture that τ + 2 is the only such number less than 4.
A sunflower is a collection of distinct sets such that the intersection of any two of them is the same as the common intersection C of all of them, and |C| is smaller than each of the sets. A longstanding conjecture due to Erdős and Szemerédi (solved recently in [7, 9]; see also [22]) was that the maximum size of a family of subsets of [n] that contains no sunflower of fixed size k > 2 is exponentially smaller than 2n as n → ∞. We consider the problems of determining the maximum sum and product of k families of subsets of [n] that contain no sunflower of size k with one set from each family. For the sum, we prove that the maximum is
$$(k-1)2^n+1+\sum_{s=0}^{k-2}\binom{n}{s}$$
for all n ⩾ k ⩾ 3, and for the k = 3 case of the product, we prove that the maximum is
$$\biggl(\ffrac{1}{8}+o(1)\biggr)2^{3n}.$$
We conjecture that for all fixed k ⩾ 3, the maximum product is (1/8+o(1))2kn.