To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We use the Stein‒Chen method to obtain compound Poisson approximations for the distribution of the number of subgraphs in a generalised stochastic block model which are isomorphic to some fixed graph. This model generalises the classical stochastic block model to allow for the possibility of multiple edges between vertices. We treat the case that the fixed graph is a simple graph and that it has multiple edges. The former results apply when the fixed graph is a member of the class of strictly balanced graphs and the latter results apply to a suitable generalisation of this class to graphs with multiple edges. We also consider a further generalisation of the model to pseudo-graphs, which may include self-loops as well as multiple edges, and establish a parameter regime in the multiple edge stochastic block model in which Poisson approximations are valid. The results are applied to obtain Poisson and compound Poisson approximations (in different regimes) for subgraph counts in the Poisson stochastic block model and degree corrected stochastic block model of Karrer and Newman (2011).
One model of real-life spreading processes is that of first-passage percolation (also called the SI model) on random graphs. Social interactions often follow bursty patterns, which are usually modelled with independent and identically distributed heavy-tailed passage times on edges. On the other hand, random graphs are often locally tree-like, and spreading on trees with leaves might be very slow due to bottleneck edges with huge passage times. Here we consider the SI model with passage times following a power-law distribution ℙ(ξ>t)∼t-α with infinite mean. For any finite connected graph G with a root s, we find the largest number of vertices κ(G,s) that are infected in finite expected time, and prove that for every k≤κ(G,s), the expected time to infect k vertices is at most O(k1/α). Then we show that adding a single edge from s to a random vertex in a random tree 𝒯 typically increases κ(𝒯,s) from a bounded variable to a fraction of the size of 𝒯, thus severely accelerating the process. We examine this acceleration effect on some natural models of random graphs: critical Galton--Watson trees conditioned to be large, uniform spanning trees of the complete graph, and on the largest cluster of near-critical Erdős‒Rényi graphs. In particular, at the upper end of the critical window, the process is already much faster than exactly at criticality.
A filling of a closed hyperbolic surface is a set of simpleclosed geodesics whose complement is a disjoint union of hyperbolicpolygons. The systolic length is the length of a shortestessential closed geodesic on the surface. A geodesic is called systolic, ifthe systolic length is realised by its length. For every $g\geq 2$, we construct closed hyperbolic surfaces of genus $g$ whose systolic geodesics fill the surfaces withcomplements consisting of only two components. Finally, we remark that onecan deform the surfaces obtained to increase the systole.
We revisit the coordinatisation method for projective planes by considering the consequences of using finite fields to coordinatise projective planes of prime power order. This leads to some general restrictions on the form of the resulting planar ternary ring (PTR) when viewed as a trivariate polynomial over the field. We also consider how the Lenz–Barlotti type of the plane being coordinatised impacts the form of the PTR polynomial, thereby deriving further restrictions.
We extend known results concerning crossing numbers by giving the crossingnumber of the join product $G+D_{n}$, where the connected graph $G$ consists of one $4$-cycle and of two leaves incident with the same vertex ofthe $4$-cycle, and $D_{n}$ consists of $n$ isolated vertices. The proofs are done with the help ofsoftware that generates all cyclic permutations for a given number $k$ and creates a graph for calculating the distances betweenall $(k-1)!$ vertices of the graph.
Let $G$ be an infinite graph on countably many vertices and let $\unicode[STIX]{x1D6EC}$ be a closed, infinite set of real numbers. We establishthe existence of an unbounded self-adjoint operator whose graph is $G$ and whose spectrum is $\unicode[STIX]{x1D6EC}$.
We give combinatorial descriptions of two stochastic growth models for series-parallel networks introduced by Hosam Mahmoud by encoding the growth process via recursive tree structures. Using decompositions of the tree structures and applying analytic combinatorics methods allows a study of quantities in the corresponding series-parallel networks. For both models we obtain limiting distribution results for the degree of the poles and the length of a random source-to-sink path, and furthermore we get asymptotic results for the expected number of source-to-sink paths. Moreover, we introduce generalizations of these stochastic models by encoding the growth process of the networks via further important increasing tree structures.
We present an average-case analysis of a variant of dual-pivot quicksort. We show that the algorithmic partitioning strategy used is optimal, that is, it minimizes the expected number of key comparisons. For the analysis, we calculate the expected number of comparisons exactly as well as asymptotically; in particular, we provide exact expressions for the linear, logarithmic and constant terms.
An essential step is the analysis of zeros of lattice paths in a certain probability model. Along the way a combinatorial identity is proved.
We compute the limit shape for several classes of restricted integer partitions, where the restrictions are placed on the part sizes rather than the multiplicities. Our approach utilizes certain classes of bijections which map limit shapes continuously in the plane. We start with bijections outlined in [43], and extend them to include limit shapes with different scaling functions.
Athanasiadis [‘A survey of subdivisions and local $h$-vectors’, in The Mathematical Legacy of Richard P. Stanley (American Mathematical Society, Providence, RI, 2017), 39–51] asked whether the local $h$-polynomials of type $A$ cluster subdivisions have only real zeros. We confirm this conjecture and prove that the local $h$-polynomials for all the Cartan–Killing types have only real roots. Our proofs use multiplier sequences and Chebyshev polynomials of the second kind.
Classical finite association schemes lead to finite-dimensional algebras which are generated by finitely many stochastic matrices. Moreover, there exist associated finite hypergroups. The notion of classical discrete association schemes can be easily extended to the possibly infinite case. Moreover, this notion can be relaxed slightly by using suitably deformed families of stochastic matrices by skipping the integrality conditions. This leads to a larger class of examples which are again associated with discrete hypergroups. In this paper we propose a topological generalization of association schemes by using a locally compact basis space $X$ and a family of Markov-kernels on $X$ indexed by some locally compact space $D$ where the supports of the associated probability measures satisfy some partition property. These objects, called continuous association schemes, will be related to hypergroup structures on $D$. We study some basic results for this notion and present several classes of examples. It turns out that, for a given commutative hypergroup, the existence of a related continuous association scheme implies that the hypergroup has many features of a double coset hypergroup. We, in particular, show that commutative hypergroups, which are associated with commutative continuous association schemes, carry dual positive product formulas for the characters. On the other hand, we prove some rigidity results in particular in the compact case which say that for given spaces $X,D$ there are only a few continuous association schemes.
For an integer q ⩾ 2 and an even integer d, consider the graph obtained from a large complete q-ary tree by connecting with an edge any two vertices at distance exactly d in the tree. This graph has clique number q + 1, and the purpose of this short note is to prove that its chromatic number is Θ((d log q)/log d). It was not known that the chromatic number of this graph grows with d. As a simple corollary of our result, we give a negative answer to a problem of van den Heuvel and Naserasr, asking whether there is a constant C such that for any odd integer d, any planar graph can be coloured with at most C colours such that any pair of vertices at distance exactly d have distinct colours. Finally, we study interval colouring of trees (where vertices at distance at least d and at most cd, for some real c > 1, must be assigned distinct colours), giving a sharp upper bound in the case of bounded degree trees.
The paper introduces a graph theory variation of the general position problem: given a graph $G$, determine a largest set $S$ of vertices of $G$ such that no three vertices of $S$ lie on a common geodesic. Such a set is a max-gp-set of $G$ and its size is the gp-number $\text{gp}(G)$ of $G$. Upper bounds on $\text{gp}(G)$ in terms of different isometric covers are given and used to determine the gp-number of several classes of graphs. Connections between general position sets and packings are investigated and used to give lower bounds on the gp-number. It is also proved that the general position problem is NP-complete.
Employing a simple and direct geometric approach, we prove formulas for a large class of degeneracy loci in types B, C, and D, including those coming from all isotropic Grassmannians. The results unify and generalize previous Pfaffian and determinantal formulas. Specializing to the Grassmannian case, we recover the remarkable theta- and eta-polynomials of Buch, Kresch, Tamvakis, and Wilson. Our method yields streamlined proofs which proceed in parallel for all four classical types, substantially simplifying previous work on the subject. In an appendix, we develop some foundational algebra and prove several Pfaffian identities. Another appendix establishes a basic formula for classes in quadric bundles.
A perfect H-tiling in a graph G is a collection of vertex-disjoint copies of a graph H in G that together cover all the vertices in G. In this paper we investigate perfect H-tilings in a random graph model introduced by Bohman, Frieze and Martin [6] in which one starts with a dense graph and then adds m random edges to it. Specifically, for any fixed graph H, we determine the number of random edges required to add to an arbitrary graph of linear minimum degree in order to ensure the resulting graph contains a perfect H-tiling with high probability. Our proof utilizes Szemerédi's Regularity Lemma [29] as well as a special case of a result of Komlós [18] concerning almost perfect H-tilings in dense graphs.
Let k ⩾ 2 be an integer. We show that if s = 2 and t ⩾ 2, or s = t = 3, then the maximum possible number of edges in a C2k+1-free graph containing no induced copy of Ks,t is asymptotically equal to (t − s + 1)1/s(n/2)2−1/s except when k = s = t = 2.
This strengthens a result of Allen, Keevash, Sudakov and Verstraëte [1], and answers a question of Loh, Tait, Timmons and Zhou [14].
We prove that the number of multigraphs with vertex set {1, . . ., n} such that every four vertices span at most nine edges is an2+o(n2) where a is transcendental (assuming Schanuel's conjecture from number theory). This is an easy consequence of the solution to a related problem about maximizing the product of the edge multiplicities in certain multigraphs, and appears to be the first explicit (somewhat natural) question in extremal graph theory whose solution is transcendental. These results may shed light on a question of Razborov, who asked whether there are conjectures or theorems in extremal combinatorics which cannot be proved by a certain class of finite methods that include Cauchy–Schwarz arguments.
Our proof involves a novel application of Zykov symmetrization applied to multigraphs, a rather technical progressive induction, and a straightforward use of hypergraph containers.
Recently, Sun posed a series of conjectures on the log-concavity of the sequence , where is a familiar combinatorial sequence of positive integers. Luca and Stănică, Hou et al. and Chen et al. proved some of Sun's conjectures. In this paper, we present a criterion on the log-concavity of the sequence . The criterion is based on the existence of a function f(n) that satisfies some inequalities involving terms related to the sequence . Furthermore, we present a heuristic approach to compute f(n). As applications, we prove that, for the Zagier numbers , the sequences are strictly log-concave, which confirms a conjecture of Sun. We also prove the log-concavity of the sequence of Cohen–Rhin numbers.