To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Fixing a positive integer r and $0 \les k \les r-1$, define $f^{\langle r,k \rangle }$ for every formal power series f as $ f(x) = f^{\langle r,0 \rangle }(x^r)+xf^{\langle r,1 \rangle }(x^r)+ \cdots +x^{r-1}f^{\langle r,r-1 \rangle }(x^r).$ Jochemko recently showed that the polynomial $U^{n}_{r,k}\, h(x) := ( (1+x+\cdots +x^{r-1})^{n} h(x) )^{\langle r,k \rangle }$ has only non-positive zeros for any $r \ges \deg h(x) -k$ and any positive integer n. As a consequence, Jochemko confirmed a conjecture of Beck and Stapledon on the Ehrhart polynomial $h(x)$ of a lattice polytope of dimension n, which states that $U^{n}_{r,0}\,h(x)$ has only negative, real zeros whenever $r\ges n$. In this paper, we provide an alternative approach to Beck and Stapledon's conjecture by proving the following general result: if the polynomial sequence $( h^{\langle r,r-i \rangle }(x))_{1\les i \les r}$ is interlacing, so is $( U^{n}_{r,r-i}\, h(x) )_{1\les i \les r}$. Our result has many other interesting applications. In particular, this enables us to give a new proof of Savage and Visontai's result on the interlacing property of some refinements of the descent generating functions for coloured permutations. Besides, we derive a Carlitz identity for refined coloured permutations.
A classical result of Honsberger states that the number of incongruent triangles with integer sides and perimeter $n$ is the nearest integer to $n^{2}/48$ ($n$ even) or $(n+3)^{2}/48$ ($n$ odd). We solve the analogous problem for $m$-gons (for arbitrary but fixed $m\geq 3$) and for polygons (with arbitrary number of sides).
In this paper, we extend the strong laws of large numbers and entropy ergodic theorem for partial sums for tree-indexed nonhomogeneous Markov chains fields to delayed versions of nonhomogeneous Markov chains fields indexed by a homogeneous tree. At first we study a generalized strong limit theorem for nonhomogeneous Markov chains indexed by a homogeneous tree. Then we prove the generalized strong laws of large numbers and the generalized asymptotic equipartition property for delayed sums of finite nonhomogeneous Markov chains indexed by a homogeneous tree. As corollaries, we can get the similar results of some current literatures. In this paper, the problem settings may not allow to use Doob's martingale convergence theorem, and we overcome this difficulty by using Borel–Cantelli Lemma so that our proof technique also has some new elements compared with the reference Yang and Ye (2007).
We prove some congruences on sums involving fourth powers of central q-binomial coefficients. As a conclusion, we confirm the following supercongruence observed by Long [Pacific J. Math. 249 (2011), 405–418]:
where p⩾5 is a prime and r is a positive integer. Our method is similar to but a little different from the WZ method used by Zudilin to prove Ramanujan-type supercongruences.
First, we prove a theorem on dynamics of actions of monoids by endomorphisms of semigroups. Second, we introduce algebraic structures suitable for formalizing infinitary Ramsey statements and prove a theorem that such statements are implied by the existence of appropriate homomorphisms between the algebraic structures. We make a connection between the two themes above, which allows us to prove some general Ramsey theorems for sequences. We give a new proof of the Furstenberg–Katznelson Ramsey theorem; in fact, we obtain a version of this theorem that is stronger than the original one. We answer in the negative a question of Lupini on possible extensions of Gowers’ Ramsey theorem.
For a group $G$, let $\unicode[STIX]{x1D6E4}(G)$ denote the graph defined on the elements of $G$ in such a way that two distinct vertices are connected by an edge if and only if they generate $G$. Let $\unicode[STIX]{x1D6E4}^{\ast }(G)$ be the subgraph of $\unicode[STIX]{x1D6E4}(G)$ that is induced by all the vertices of $\unicode[STIX]{x1D6E4}(G)$ that are not isolated. We prove that if $G$ is a 2-generated noncyclic abelian group, then $\unicode[STIX]{x1D6E4}^{\ast }(G)$ is connected. Moreover, $\text{diam}(\unicode[STIX]{x1D6E4}^{\ast }(G))=2$ if the torsion subgroup of $G$ is nontrivial and $\text{diam}(\unicode[STIX]{x1D6E4}^{\ast }(G))=\infty$ otherwise. If $F$ is the free group of rank 2, then $\unicode[STIX]{x1D6E4}^{\ast }(F)$ is connected and we deduce from $\text{diam}(\unicode[STIX]{x1D6E4}^{\ast }(\mathbb{Z}\times \mathbb{Z}))=\infty$ that $\text{diam}(\unicode[STIX]{x1D6E4}^{\ast }(F))=\infty$.
We discuss a rich family of directed series–parallel (SP) graphs grown by the simultaneous random series or parallel development of multiple edges. The family portrays a spectrum that spans a wide range of SP graphs: from simple models, where only as few as one edge is chosen for evolution at each discrete point in time, to complex hierarchical lattice networks grown by a take-all strategy, where all the edges in the existing network are developed.
The family of SP graphs we discuss is grown from an initial seed graph with τ0 edges under an arbitrary building sequence, $\{k_{n}\}_{n=1}^{\infty}$, of nonnegative integers (with $k_n \le \tau _0 + \sum\nolimits_{i = 1}^n {k_i} $, for arbitrary τ0 ≥ 1), that specifies the number of edges subjected to evolution at time n. We study the average north polar degree and show that we can go beyond averages to strong laws. We also find the exact average number of critical edges. The asymptotics of the critical edges are facilitated under the regularity condition that $k_n/\sum\nolimits_{i = 1}^n {k_i} $ converges to a constant (as n → ∞), a natural condition easily met by practical strategies, such as single-edge evolution and take-all choice, and much in between.
the pioneer of interchange laws in universal algebra
We establish a combinatorial model for the Boardman–Vogt tensor product of several absolutely free operads, that is, free symmetric operads that are also free as 𝕊-modules. Our results imply that such a tensor product is always a free 𝕊-module, in contrast with the results of Kock and Bremner–Madariaga on hidden commutativity for the Boardman–Vogt tensor square of the operad of non-unital associative algebras.
In the framework of coupled cell systems, a coupled cell network describes graphically the dynamical dependencies between individual dynamical systems, the cells. The fundamental network of a network reveals the hidden symmetries of that network. Subspaces defined by equalities of coordinates which are flow-invariant for any coupled cell system consistent with a network structure are called the network synchrony subspaces. Moreover, for every synchrony subspace, each network admissible system restricted to that subspace is a dynamical system consistent with a smaller network called a quotient network. We characterize networks such that: the network is a subnetwork of its fundamental network, and the network is a fundamental network. Moreover, we prove that the fundamental network construction preserves the quotient relation and it transforms the subnetwork relation into the quotient relation. The size of cycles in a network and the distance of a cell to a cycle are two important properties concerning the description of the network architecture. In this paper, we relate these two architectural properties in a network and its fundamental network.
Le diagrams and Grassmann necklaces both index the collection of positroids in the nonnegative Grassmannian Gr≥0(k, n), but they excel at very different tasks: for example, the dimension of a positroid is easily extracted from its Le diagram, while the list of bases of a positroid is far more easily obtained from its Grassmann necklace. Explicit bijections between the two are, therefore, desirable. An algorithm for turning a Le diagram into a Grassmann necklace already exists; in this note, we give the reverse algorithm.
In 2010, Hei-Chi Chan introduced the cubic partition function a(n) in connection with Ramanujan's cubic continued fraction. Chen and Lin, and Ahmed, Baruah and Dastidar proved that a(25n + 22) ≡ 0 (mod 5) for n ⩾ 0. In this paper, we prove several infinite families of congruences modulo 5 and 7 for a(n). Our results generalize the congruence a(25n + 22) ≡ 0 (mod 5) and four congruences modulo 7 for a(n) due to Chen and Lin. Moreover, we present some non-standard congruences modulo 5 for a(n) by using an identity of Newman. For example, we prove that $a((({15\times 17^{3\alpha }+1})/{8})) \equiv 3^{\alpha +1} \ ({\rm mod}\ 5)$ for α ⩾ 0.
Free binary systems are shown not to admit idempotent means. This refutes a conjecture of the author. It is also shown that the extension of Hindman’s theorem to nonassociative binary systems formulated and conjectured by the author is false.
Is there some absolute $\unicode[STIX]{x1D700}>0$ such that for any claw-free graph $G$, the chromatic number of the square of $G$ satisfies $\unicode[STIX]{x1D712}(G^{2})\leqslant (2-\unicode[STIX]{x1D700})\unicode[STIX]{x1D714}(G)^{2}$, where $\unicode[STIX]{x1D714}(G)$ is the clique number of $G$? Erdős and Nešetřil asked this question for the specific case where $G$ is the line graph of a simple graph, and this was answered in the affirmative by Molloy and Reed. We show that the answer to the more general question is also yes, and, moreover, that it essentially reduces to the original question of Erdős and Nešetřil.
Let $G$ be a claw-free graph on $n$ vertices with clique number $\unicode[STIX]{x1D714}$, and consider the chromatic number $\unicode[STIX]{x1D712}(G^{2})$ of the square $G^{2}$ of $G$. Writing $\unicode[STIX]{x1D712}_{s}^{\prime }(d)$ for the supremum of $\unicode[STIX]{x1D712}(L^{2})$ over the line graphs $L$ of simple graphs of maximum degree at most $d$, we prove that $\unicode[STIX]{x1D712}(G^{2})\leqslant \unicode[STIX]{x1D712}_{s}^{\prime }(\unicode[STIX]{x1D714})$ for $\unicode[STIX]{x1D714}\in \{3,4\}$. For $\unicode[STIX]{x1D714}=3$, this implies the sharp bound $\unicode[STIX]{x1D712}(G^{2})\leqslant 10$. For $\unicode[STIX]{x1D714}=4$, this implies $\unicode[STIX]{x1D712}(G^{2})\leqslant 22$, which is within 2 of the conjectured best bound. This work is motivated by a strengthened form of a conjecture of Erdős and Nešetřil.
We consider a problem introduced by Mossel and Ross (‘Shotgun assembly of labeled graphs’, arXiv:1504.07682). Suppose a random n × n jigsaw puzzle is constructed by independently and uniformly choosing the shape of each ‘jig’ from q possibilities. We are given the shuffled pieces. Then, depending on q, what is the probability that we can reassemble the puzzle uniquely? We say that two solutions of a puzzle are similar if they only differ by a global rotation of the puzzle, permutation of duplicate pieces, and rotation of rotationally symmetric pieces. In this paper, we show that, with high probability, such a puzzle has at least two non-similar solutions when 2 ⩽ q ⩽ 2e−1/2n, all solutions are similar when q ⩾ (2+ϵ)n, and the solution is unique when q = ω(n).
Suppose that N is 2-coloured. Then there are infinitely many monochromatic solutions to $x+y=z^{2}$. On the other hand, there is a 3-colouring of N with only finitely many monochromatic solutions to this equation.
We study the geometry of the component of the origin in the uniform spanning forest of $\mathbb{Z}^{d}$ and give bounds on the size of balls in the intrinsic metric.
We study the percolation model on Boltzmann triangulations using a generating function approach. More precisely, we consider a Boltzmann model on the set of finite planar triangulations, together with a percolation configuration (either site-percolation or bond-percolation) on this triangulation. By enumerating triangulations with boundaries according to both the boundary length and the number of vertices/edges on the boundary, we are able to identify a phase transition for the geometry of the origin cluster. For instance, we show that the probability that a percolation interface has length $n$ decays exponentially with $n$ except at a particular value $p_{c}$ of the percolation parameter $p$ for which the decay is polynomial (of order $n^{-10/3}$). Moreover, the probability that the origin cluster has size $n$ decays exponentially if $p<p_{c}$ and polynomially if $p\geqslant p_{c}$.
The critical percolation value is $p_{c}=1/2$ for site percolation, and $p_{c}=(2\sqrt{3}-1)/11$ for bond percolation. These values coincide with critical percolation thresholds for infinite triangulations identified by Angel for site-percolation, and by Angel and Curien for bond-percolation, and we give an independent derivation of these percolation thresholds.
Lastly, we revisit the criticality conditions for random Boltzmann maps, and argue that at $p_{c}$, the percolation clusters conditioned to have size $n$ should converge toward the stable map of parameter $\frac{7}{6}$ introduced by Le Gall and Miermont. This enables us to derive heuristically some new critical exponents.
A result of Haglund implies that the $(q,t)$-bigraded Hilbert series of the space of diagonal harmonics is a $(q,t)$-Ehrhart function of the flow polytope of a complete graph with netflow vector $(-n,1,\ldots ,1)$. We study the $(q,t)$-Ehrhart functions of flow polytopes of threshold graphs with arbitrary netflow vectors. Our results generalize previously known specializations of the mentioned bigraded Hilbert series at $t=1$, $0$, and $q^{-1}$. As a corollary to our results, we obtain a proof of a conjecture of Armstrong, Garsia, Haglund, Rhoades, and Sagan about the $(q,q^{-1})$-Ehrhart function of the flow polytope of a complete graph with an arbitrary netflow vector.