To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We investigate the number of 4-edge paths in graphs with a given number of vertices and edges, proving an asymptotically sharp upper bound on this number. The extremal construction is the quasi-star or the quasi-clique graph, depending on the edge density. An easy lower bound is also proved. This answer resembles the classic theorem of Ahlswede and Katona about the maximal number of 2-edge paths, and a recent theorem of Kenyon, Radin, Ren and Sadun about k-edge stars.
Let $c\unicode[STIX]{x1D719}_{k}(n)$ denote the number of $k$-colored generalized Frobenius partitions of $n$. Recently, new Ramanujan-type congruences associated with $c\unicode[STIX]{x1D719}_{4}(n)$ were discovered. In this article, we discuss two approaches in proving such congruences using the theory of modular forms. Our methods allow us to prove congruences such as $c\unicode[STIX]{x1D719}_{4}(14n+6)\equiv 0\;\text{mod}\;7$ and Seller’s congruence $c\unicode[STIX]{x1D719}_{4}(10n+6)\equiv 0\;\text{mod}\;5$.
The dichromatic number of a graph $G$ is the maximum integer $k$ such that there exists an orientation of the edges of $G$ such that for every partition of the vertices into fewer than $k$ parts, at least one of the parts must contain a directed cycle under this orientation. In 1979, Erdős and Neumann-Lara conjectured that if the dichromatic number of a graph is bounded, so is its chromatic number. We make the first significant progress on this conjecture by proving a fractional version of the conjecture. While our result uses a stronger assumption about the fractional chromatic number, it also gives a much stronger conclusion: if the fractional chromatic number of a graph is at least $t$, then the fractional version of the dichromatic number of the graph is at least ${\textstyle \frac{1}{4}}t/\log _{2}(2et^{2})$. This bound is best possible up to a small constant factor. Several related results of independent interest are given.
Let ℱ be a family of graphs and let d be large enough. For every d-regular graph G, we study the existence of a spanning ℱ-free subgraph of G with large minimum degree. This problem is well understood if ℱ does not contain bipartite graphs. Here we provide asymptotically tight results for many families of bipartite graphs such as cycles or complete bipartite graphs. To prove these results, we study a locally injective analogue of the question.
Let k ⩾ 3 be a fixed integer and let Zk(G) be the number of k-colourings of the graph G. For certain values of the average degree, the random variable Zk(G(n, m)) is known to be concentrated in the sense that $\tfrac{1}{n}(\ln Z_k(G(n,m))-\ln\Erw[Z_k(G(n,m))])$ converges to 0 in probability (Achlioptas and Coja-Oghlan, Proc. FOCS 2008). In the present paper we prove a significantly stronger concentration result. Namely, we show that for a wide range of average degrees, $\tfrac{1}{\omega}(\ln Z_k(G(n,m))-\ln\Erw[Z_k(G(n,m))])$ converges to 0 in probability for any diverging function $\omega=\omega(n)\ra\infty$. For k exceeding a certain constant k0 this result covers all average degrees up to the so-called condensation phase transitiondk,con, and this is best possible. As an application, we show that the experiment of choosing a k-colouring of the random graph G(n,m) uniformly at random is contiguous with respect to the so-called ‘planted model’.
For each integer $d\geqslant 3$, we obtain a characterization of all graphs in which the ball of radius $3$ around each vertex is isomorphic to the ball of radius 3 in $\mathbb{L}^{d}$, the graph of the $d$-dimensional integer lattice. The finite, connected graphs with this property have a highly rigid, ‘global’ algebraic structure; they can be viewed as quotient lattices of $\mathbb{L}^{d}$ in various compact $d$-dimensional orbifolds which arise from crystallographic groups. We give examples showing that ‘radius 3’ cannot be replaced by ‘radius 2’, and that ‘orbifold’ cannot be replaced by ‘manifold’. In the $d=2$ case, our methods yield new proofs of structure theorems of Thomassen [‘Tilings of the Torus and Klein bottle and vertex-transitive graphs on a fixed surface’, Trans. Amer. Math. Soc.323 (1991), 605–635] and of Márquez et al. [‘Locally grid graphs: classification and Tutte uniqueness’, Discrete Math.266 (2003), 327–352], and also yield short, ‘algebraic’ restatements of these theorems. Our proofs use a mixture of techniques and results from combinatorics, geometry and group theory.
We prove that, for Poisson transmission and recovery processes, the classic susceptible→infected→recovered (SIR) epidemic model of Kermack and McKendrick provides, for any given time t>0, a strict lower bound on the expected number of susceptibles and a strict upper bound on the expected number of recoveries in the general stochastic SIR epidemic. The proof is based on the recent message passing representation of SIR epidemics applied to a complete graph.
Let $B_{k,\ell }(n)$ denote the number of $(k,\ell )$-regular bipartitions of $n$. Employing both the theory of modular forms and some elementary methods, we systematically study the arithmetic properties of $B_{3,\ell }(n)$ and $B_{5,\ell }(n)$. In particular, we confirm all the conjectures proposed by Dou [‘Congruences for (3,11)-regular bipartitions modulo 11’, Ramanujan J.40, 535–540].
We consider a time varying analogue of the Erdős–Rényi graph and study the topological variations of its associated clique complex. The dynamics of the graph are stationary and are determined by the edges, whichevolve independently as continuous-time Markov chains. Our main result is that when the edgeinclusion probability is of the form p=nα, where n is the number of vertices and α∈(-1/k, -1/(k + 1)), then the process of the normalised kth Betti number of these dynamic clique complexes convergesweakly to the Ornstein–Uhlenbeck process as n→∞.
We introduce and study a new model that we call the matching model. Items arrive one by one in a buffer and depart from it as soon as possible but by pairs. The items of a departing pair are said to be matched. There is a finite set of classes 𝒱 for the items, and the allowed matchings depend on the classes, according to a matching graph on 𝒱. Upon arrival, an item may find several possible matches in the buffer. This indeterminacy is resolved by a matching policy. When the sequence of classes of the arriving items is independent and identically distributed, the sequence of buffer-content is a Markov chain, whose stability is investigated. In particular, we prove that the model may be stable if and only if the matching graph is nonbipartite.
Given a graph F, let st(F) be the number of subdivisions of F, each with a different vertex set, which one can guarantee in a graph G in which every edge lies in at least t copies of F. In 1990, Tuza asked for which graphs F and large t, one has that st(F) is exponential in a power of t. We show that, somewhat surprisingly, the only such F are complete graphs, and for every F which is not complete, st(F) is polynomial in t. Further, for a natural strengthening of the local condition above, we also characterize those F for which st(F) is exponential in a power of t.
We introduce the open degree of a compact space, and we show that for every natural number $n$, the separable Rosenthal compact spaces of degree $n$ have a finite basis.
The aim of this paper is to develop analytic techniques to deal with the monotonicity of certain combinatorial sequences. On the one hand, a criterion for the monotonicity of the function is given, which is a continuous analogue of a result of Wang and Zhu. On the other hand, the log-behaviour of the functions
is considered, where ζ(x) and Γ(x) are the Riemann zeta function and the Euler Gamma function, respectively. Consequently, the strict log-concavities of the function θ(x) (a conjecture of Chen et al.) and for some combinatorial sequences (including the Bernoulli numbers, the tangent numbers, the Catalan numbers, the Fuss–Catalan numbers, and the binomial coefficients are demonstrated. In particular, this contains some results of Chen et al., and Luca and Stănică. Finally, by researching the logarithmically complete monotonicity of some functions, the infinite log-monotonicity of the sequence
is proved. This generalizes two results of Chen et al. that both the Catalan numbers and the central binomial coefficients are infinitely log-monotonic, and strengthens one result of Su and Wang that is log-convex in n for positive integers d > δ. In addition, the asymptotically infinite log-monotonicity of derangement numbers is showed. In order to research the stronger properties of the above functions θ(x) and F(x), the logarithmically complete monotonicity of functions
is also obtained, which generalizes the results of Lee and Tepedelenlioǧlu, and Qi and Li.
We prove that proper coloring distinguishes between block factors and finitely dependent stationary processes. A stochastic process is finitely dependent if variables at sufficiently well-separated locations are independent; it is a block factor if it can be expressed as an equivariant finite-range function of independent variables. The problem of finding non-block-factor finitely dependent processes dates back to 1965. The first published example appeared in 1993, and we provide arguably the first natural examples. Schramm proved in 2008 that no stationary 1-dependent 3-coloring of the integers exists, and asked whether a $k$-dependent $q$-coloring exists for any $k$ and $q$. We give a complete answer by constructing a 1-dependent 4-coloring and a 2-dependent 3-coloring. Our construction is canonical and natural, yet very different from all previous schemes. In its pure form it yields precisely the two finitely dependent colorings mentioned above, and no others. The processes provide unexpected connections between extremal cases of the Lovász local lemma and descent and peak sets of random permutations. Neither coloring can be expressed as a block factor, nor as a function of a finite-state Markov chain; indeed, no stationary finitely dependent coloring can be so expressed. We deduce extensions involving $d$ dimensions and shifts of finite type; in fact, any nondegenerate shift of finite type also distinguishes between block factors and finitely dependent processes.
Motivated by the local theory of Banach spaces, we introduce a notion of finite representability for metric spaces. This allows us to develop a new technique for comparing the generalised roundness of metric spaces. We illustrate this technique by applying it to Banach spaces and metric trees. In the realm of Banach spaces we obtain results such as the following: (1) if ${\mathcal{U}}$ is any ultrafilter and $X$ is any Banach space, then the second dual $X^{\ast \ast }$ and the ultrapower $(X)_{{\mathcal{U}}}$ have the same generalised roundness as $X$, and (2) no Banach space of positive generalised roundness is uniformly homeomorphic to $c_{0}$ or $\ell _{p}$, $2<p<\infty$. For metric trees, we give the first examples of metric trees of generalised roundness one that have finite diameter. In addition, we show that metric trees of generalised roundness one possess special Euclidean embedding properties that distinguish them from all other metric trees.
We determine a bound for the valency in a family of dihedrants of twice odd prime orders which guarantees that the Cayley graphs are Ramanujan graphs. We take two families of Cayley graphs with the underlying dihedral group of order $2p$: one is the family of all Cayley graphs and the other is the family of normal ones. In the normal case, which is easier, we discuss the problem for a wider class of groups, the Frobenius groups. The result for the family of all Cayley graphs is similar to that for circulants: the prime $p$ is ‘exceptional’ if and only if it is represented by one of six specific quadratic polynomials.
In this paper, we study the integer sequence $(E_{n})_{n\geq 1}$, where $E_{n}$ counts the number of possible dimensions for centralisers of $n\times n$ matrices. We give an example to show another combinatorial interpretation of $E_{n}$ and present an implicit recurrence formula for $E_{n}$, which may provide a fast algorithm for computing $E_{n}$. Based on the recurrence, we obtain the asymptotic formula $E_{n}=\frac{1}{2}n^{2}-\frac{2}{3}\sqrt{2}n^{3/2}+O(n^{5/4})$.
The classical theorem of Vizing states that every graph of maximum degree $d$ admits an edge coloring with at most $d+1$ colors. Furthermore, as it was earlier shown by Kőnig, $d$ colors suffice if the graph is bipartite. We investigate the existence of measurable edge colorings for graphings (or measure-preserving graphs). A graphing is an analytic generalization of a bounded-degree graph that appears in various areas, such as sparse graph limits, orbit equivalence and measurable group theory. We show that every graphing of maximum degree $d$ admits a measurable edge coloring with $d+O(\sqrt{d})$ colors; furthermore, if the graphing has no odd cycles, then $d+1$ colors suffice. In fact, if a certain conjecture about finite graphs that strengthens Vizing’s theorem is true, then our method will show that $d+1$ colors are always enough.
We say a graph is (Qn,Qm)-saturated if it is a maximal Qm-free subgraph of the n-dimensional hypercube Qn. A graph is said to be (Qn,Qm)-semi-saturated if it is a subgraph of Qn and adding any edge forms a new copy of Qm. The minimum number of edges a (Qn,Qm)-saturated graph (respectively (Qn,Qm)-semi-saturated graph) can have is denoted by sat(Qn,Qm) (respectively s-sat(Qn,Qm)). We prove that
for fixed m, disproving a conjecture of Santolupo that, when m=2, this limit is 1/4. Further, we show by a different method that sat(Qn, Q2)=O(2n), and that s-sat(Qn, Qm)=O(2n), for fixed m. We also prove the lower bound
Let G be an abelian group of cardinality n, where hcf(n, 6) = 1, and let A be a random subset of G. Form a graph ΓA on vertex set G by joining x to y if and only if x + y ∈ A. Then, with high probability as n → ∞, the chromatic number χ(ΓA) is at most $(1 + o(1))\tfrac{n}{2\log_2 n}$. This is asymptotically sharp when G = ℤ/nℤ, n prime.