We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper inverstigates the automorphism groups of Cayley graphs of metracyclic p-gorups. A characterization is given of the automorphism groups of Cayley grahs of a metacyclic p-group for odd prime p. In particular, a complete determiniation of the automophism group of a connected Cayley graph with valency less than 2p of a nonabelian metacyclic p-group is obtained as a consequence. In subsequent work, the result of this paper has been applied to solve several problems in graph theory.
The application of the generalised ballot theorem to queueing theory leads to elegant results for the simple M/G/1 queue. It is thought that such results are not possible for more general M/G/1-type queues. We, however, derive a batch ballot theorem which can be applied to derive the first passage distribution matrix, G, for the general M/G/1-type queue.
Following Füredi and Komlós, we develop a graph theory method to study the high moments of large random matrices with independent entries. We apply this method to sparse N × N random matrices AN,p that have, on average, p non-zero elements per row. One of our results is related to the asymptotic behaviour of the spectral norm ∥AN,p∥ in the limit 1 ≪ p ≪ N. We show that the value pc = log N is the critical one for lim ∥AN,p/√p∥ to be bounded or not. We discuss relations of this result with the Erdős–Rényi limit theorem and properties of large random graphs. In the proof, the principal issue is that the averaged vertex degree of plane rooted trees of k edges remains bounded even when k → ∞. This observation implies fairly precise estimates for the moments of AN,p. They lead to certain generalizations of the results by Sinai and Soshnikov on the universality of local spectral statistics at the border of the limiting spectra of large random matrices.
Classic works of Karlin and McGregor and Jones and Magnus have established a general correspondence between continuous-time birth-and-death processes and continued fractions of the Stieltjes-Jacobi type together with their associated orthogonal polynomials. This fundamental correspondence is revisited here in the light of the basic relation between weighted lattice paths and continued fractions otherwise known from combinatorial theory. Given that sample paths of the embedded Markov chain of a birth-and-death process are lattice paths, Laplace transforms of a number of transient characteristics can be obtained systematically in terms of a fundamental continued fraction and its family of convergent polynomials. Applications include the analysis of evolutions in a strip, upcrossing and downcrossing times under flooring and ceiling conditions, as well as time, area, or number of transitions while a geometric condition is satisfied.
Consider the Delaunay graph and the Voronoi tessellation constructed with respect to a Poisson point process. The sequence of nuclei of the Voronoi cells that are crossed by a line defines a path on the Delaunay graph. We show that the evolution of this path is governed by a Markov chain. We study the ergodic properties of the chain and find its stationary distribution. As a corollary, we obtain the ratio of the mean path length to the Euclidean distance between the end points, and hence a bound for the mean asymptotic length of the shortest path.
We apply these results to define a family of simple incremental algorithms for constructing short paths on the Delaunay graph and discuss potential applications to routeing in mobile communication networks.
The random triangle model was recently introduced as a random graph model that captures the property of transitivity that is often found in social networks, i.e. the property that given that two vertices are second neighbors, they are more likely to be neighbors. For parameters p ∊ [0,1] and q ≥ 1, and a finite graph G = (V, E), it assigns to elements η of {0,1}E probabilities which are proportional to
where t(η) is the number of triangles in the open subgraph. In this paper the behavior of the random triangle model on the two-dimensional triangular lattice is studied. By mapping the system onto an Ising model with external field on the hexagonal lattice, it is shown that phase transition occurs if and only if p = (q−1)−2/3 and q > qc for a critical value qc which turns out to equal It is furthermore demonstrated that phase transition cannot occur unless p = pc(q), the critical value for percolation of open edges for given q. This implies that for q ≥ qc, pc(q) = (q−1)−2/3.
We analyse the expected performance of various group testing, or pooling, designs. The context is that of identifying characterized clones in a large collection of clones. Here we choose as performance criterion the expected number of unresolved ‘negative’ clones, and we aim to minimize this quantity. Technically, long inclusion–exclusion summations are encountered which, aside from being computationally demanding, give little inkling of the qualitative effect of parametric control on the pooling strategy. We show that readily-interpreted re-summation can be performed, leading to asymptotic forms and systematic corrections. We apply our results to randomized designs, illustrating how they might be implemented for approximating combinatorial formulae.
Let Xi : i ≥ 1 be i.i.d. points in ℝd, d ≥ 2, and let Tn be a minimal spanning tree on X1,…,Xn. Let L(X1,…,Xn) be the length of Tn and for each strictly positive integer α let N(X1,…,Xn;α) be the number of vertices of degree α in Tn. If the common distribution satisfies certain regularity conditions, then we prove central limit theorems for L(X1,…,Xn) and N(X1,…,Xn;α). We also study the rate of convergence for EL(X1,…,Xn).
In a cubic multigraph certain restrictions on the paths are made to define what is called a railway. On the tracks in the railway (edges in the multigraph) an equivalence relation is defined. The number of equivalence classes induced by this relation is investigated for a random railway achieved from a random cubic multigraph, and the asymptotic distribution of this number is derived as the number of vertices tends to infinity.
We approach sphere of influence graphs (SIGs) from a probabilistic perspective. Ordinary SIGs were first introduced by Toussaint as a type of proximity graph for use in pattern recognition, computer vision and other low-level vision tasks. A random sphere of influence graph (RSIG) is constructed as follows. Consider n points uniformly and independently distributed within the unit square in d dimensions. Around each point,
Xi, draw an open ball (‘sphere of influence’) with radius equal to the distance to Xi's nearest neighbour. Finally, draw an edge between two points if their spheres of influence intersect. Asymptotically exact values for the expected number of edges in a RSIG are determined for all values of d; previously, just upper and lower bounds were known for this quantity. A modification of the Azuma-Hoeffding exponential inequality is employed to exhibit the sharp concentration of the number of edges around its expected value.
A random mapping (Tn;q) of a finite set V, V = {1,2,…,n}, into itself assigns independently to each i ∊ V its unique image j ∊ V with probability q if i = j and with probability P = (1-q)/(n−1) if i ≠ j. Three versions of epidemic processes on a random digraph GT representing (Tn;q) are studied. The exact probability distributions of the total number of infected elements as well as the threshold functions for these epidemic processes are determined.
Consider the basic location problem in which k locations from among n given points X1,…,Xn are to be chosen so as to minimize the sum M(k; X1,…,Xn) of the distances of each point to the nearest location. It is assumed that no location can serve more than a fixed finite number D of points. When the Xi, i ≥ 1, are i.i.d. random variables with values in [0,1]d and when k = ⌈n/(D+1)⌉ we show that
where α := α(D,d) is a positive constant, f is the density of the absolutely continuous part of the law of X1, and c.c. denotes complete convergence.
The random triangle model is a Markov random graph model which, for parameters p ∊ (0,1) and q ≥ 1 and a graph G = (V,E), assigns to a subset, η, of E, a probability which is proportional to p|η|(1-p)|E|-|η|qt(η), where t(η) is the number of triangles in η. It is shown that this model has maximum entropy in the class of distributions with given edge and triangle probabilities.
Using an analogue of the correspondence between the Fortuin-Kesteleyn random cluster model and the Potts model, the asymptotic behavior of the random triangle model on the complete graph is examined for p of order n−α, α > 0, and different values of q, where q is written in the form q = 1 + h(n) / n. It is shown that the model exhibits an explosive behavior in the sense that if h(n) ≤ c log n for c < 3α, then the edge probability and the triangle probability are asymptotically the same as for the ordinary G(n,p) model, whereas if h(n) ≥ c' log n for c' > 3α, then these quantities both tend to 1. For critical values, h(n) = 3α log n + o(log n), the probability mass divides between these two extremes.
Moreover, if h(n) is of higher order than log n, then the probability that η = E tends to 1, whereas if h(n) = o(log n) and α > 2/3, then, with a probability tending to 1, the resulting graph can be coupled with a graph resulting from the G(n,p) model. In particular these facts mean that for values of p in the range critical for the appearance of the giant component and the connectivity of the graph, the way in which triangles are rewarded can only have a degenerate influence.
A general analytic scheme for Poisson approximation to discrete distributions is studied in which the asymptotic behaviours of the generalized total variation, Fortet-Mourier (or Wasserstein), Kolmogorov and Matusita (or Hellinger) distances are explicitly characterized. Applications of this result include many number-theoretic functions and combinatorial structures. Our approach differs from most of the existing ones in the literature and is easily amended for other discrete approximations; arithmetic and combinatorial examples for Bessel approximation are also presented. A unified approach is developed for deriving uniform estimates for probability generating functions of the number of components in general decomposable combinatorial structures, with or without analytic continuation outside their circles of convergence.
An n-hedral tiling of ℝd is a tiling with each tile congruent to one of the n distinct sets. In this paper, we use the iterated function systems (IFS) to generate n-hedral tilings of ℝd. Each tile in the tiling is similar to the attractor of the IFS. These tiles are fractals and their boundaries have the Hausdorff dimension less than d. Our results generalize a result of Bandt.
We introduce a new class of interacting particle systems on a graph G. Suppose initially there are Ni(0) particles at each vertex i of G, and that the particles interact to form a Markov chain: at each instant two particles are chosen at random, and if these are at adjacent vertices of G, one particle jumps to the other particle's vertex, each with probability 1/2. The process N enters a death state after a finite time when all the particles are in some independent subset of the vertices of G, i.e. a set of vertices with no edges between any two of them. The problem is to find the distribution of the death state, ηi = Ni(∞), as a function of Ni(0).
We are able to obtain, for some special graphs, the limiting distribution of Ni if the total number of particles N → ∞ in such a way that the fraction, Ni(0)/S = ξi, at each vertex is held fixed as N → ∞. In particular we can obtain the limit law for the graph S2, the two-leaf star which has three vertices and two edges.
Let n points be placed independently in ν-dimensional space according to the standard ν-dimensional normal distribution. Let Mn be the longest edge-length of the minimal spanning tree on these points; equivalently let Mn be the infimum of those r such that the union of balls of radius r/2 centred at the points is connected. We show that the distribution of (2 log n)1/2Mn - bn converges weakly to the Gumbel (double exponential) distribution, where bn are explicit constants with bn ~ (ν - 1)log log n. We also show the same result holds if Mn is the longest edge-length for the nearest neighbour graph on the points.
We develop a technique for establishing statistical tests with precise confidence levels for upper bounds on the critical probability in oriented percolation. We use it to give pc < 0.647 with a 99.999967% confidence. As Monte Carlo simulations suggest that pc ≈ 0.6445, this bound is fairly tight.
Given a group G and a finite generating set G, we take pG: G → Z to be the function which counts the number of geodesics for each group element g. This generalizes Pascal's triangle. We compute pG for word hyperbolic and describe generic behaviour in abelian groups.