We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The Petersen graph on 10 vertices is the smallest example of a vertex-transitive graph which is not a Cayley graph. We consider the problem of determining the orders of such graphs. In this, the first of a series of papers, we present a sequence of constructions which solve the problem for many orders. In particular, such graphs exist for all orders divisible by a fourth power, and all even orders which are divisible by a square.
In this contribution we consider an M/M/1 queueing model with general server vacations. Transient and steady state analysis are carried out in discrete time by combinatorial methods. Using weak convergence of discrete-parameter Markov chains we also obtain formulas for the corresponding continuous-time queueing model. As a special case we discuss briefly a queueing system with a T-policy operating.
Let = {A1, …, An} be a union-closed set. This note establishes a property which must be possessed by any smallest counterexample to the Union-Closed Sets Conjecture. Specifically, a counterexample to the conjecture with minimal n has at least three distinct elements, each of which appears in exactly (n − 1)/2 of the .
Given a commutative semigroup (S, +) with identity 0 and u × v matrices A and B with nonnegative integers as entries, we show that if C = A – B satisfies Rado's columns condition over ℤ, then any central set in S contains solutions to the system of equations . In particular, the system of equations is then partition regular. Restricting our attention to the multiplicative semigroup of positive integers (so that coefficients become exponents) we show that the columns condition over ℤ is also necessary for the existence of solutions in any central set (while the distinct notion of the columns condition over Q is necessary and sufficient for partition regularity over ℕ\{1}).
We shall say that the sets A, B ⊂ Rk are equivalent, if they are equidecomposable using translations; that is, if there are finite decompositions and vectors x1,…, xd∈Rk such that Bj = Aj + xj, (j = 1,…,d). We shall denote this fact by In [3], Theorem 3 we proved that if A ⊂ Rk is a bounded measurable set of positive measure then A is equivalent to a cube provided that Δ(δA)<k where δA denotes the boundary of A and Δ(E) denotes the packing dimension (or box dimension or upper entropy index) of the bounded set E. This implies, in particular, that any bounded convex set of positive measure is equivalent to a cube. C. A. Rogers asked whether or not the set
We consider a variety of algebras with two binary commutative and associative operations. For each integer n ≥ 0, we represent the partitions on an n-element set as n-ary terms in the variety. We determine necessary and sufficient conditions on the variety ensuring that, for each n, these representing terms be all the essentially n-ary terms and moreover that distinct partitions yield distinct terms.
A simple identity for the incomplete factorial of sums of zero-one variables is exploited to provide the factorial moments of the number of components and the number of cyclical elements of the random mapping (T, {pi}) considered by Ross (1981).
A three-parameter model of a random directed graph (digraph) is specified by the probability of ‘up arrows' from vertex i to vertex j where i < j, the probability of ‘down arrows' from i to j where i ≥ j, and the probability of bidirectional arrows between i and j. In this model, a phase transition—the abrupt appearance of a giant strongly connected component—takes place as the parameters cross a critical surface. The critical surface is determined explicitly. Before the giant component appears, almost surely all non-trivial components are small cycles. The asymptotic probability that the digraph contains no cycles of length 3 or more is computed explicitly. This model and its analysis are motivated by the theory of food webs in ecology.
Assume G is a graph with m edges. By T(n, G) we denote the classical Turan number, namely, the maximum possible number of edges in a graph H on n vertices without a copy of G. Similarly if G is a family of graphs then H does not have a copy of any member of the family. A Zk-colouring of a graph G is a colouring of the edges of G by Zk, the additive group of integers modulo k, avoiding a copy of a given graph H, for which the sum of the values on its edges is 0 (mod k). By the Zero-Sum Turan number, denoted T(n, G, Zk), k¦m, we mean the maximum number of edges in a Zk-colouring of a graph on n vertices that contains no zero-sum (mod k) copy of G. Here we mainly solve two problems of Bialostocki and Dierker [6].
Problem 1. Determine T(n, tK2, Zk) for ¦|t. In particular, is it true that T(n, tK2, Zk) = T(n, (t+k-1)K2)?
Problem 2. Does there exist a constant c(t, k) such that T(n, Ft, Zk) ≦ c(t, k)n, where Ft is the family of cycles of length at least t?
We prove Theorem 1: suppose G is a simple graph of order n having Δ(G) = n − k where k ≥ 5 and n ≥ max (13, 3k −3). If G contains an independent set of k − 3 vertices, then the TCC (Total Colouring Conjecture) is true. Applying Theorem 1, we also prove that the TCC is true for any simple graph G of order n having Δ(G) = n −5. The latter result together with some earlier results confirm that the TCC is true for all simple graphs whose maximum degree is at most four and for all simple graphs of order n having maximum degree at least n − 5.
Three differently defined classes of two-symbol sequences, which we call the two-distance sequences, the linear sequences and the characteristic sequences, have been discussed by a number of authors and some equivalences between them are known. We present a self-contained proof that the three classes are the same (when ambiguous cases of linear sequences are suitably in terpreted). Associated with each sequence is a real invariant (having a different appropriate definition for each of the three classes). We give results on the relation between sequences with the same invariant and on the symmetry of the sequences. The sequences are closely related to Beatty sequences and occur as digitized straight lines and quasicrystals. They also provide examples of minimal word proliferation in formal languages.
The dependence of coincidence of the global, local and pairwise Markov properties on the underlying undirected graph is examined. The pairs of these properties are found to be equivalent for graphs with some small excluded subgraphs. Probabilistic representations of the corresponding conditional independence structures are discussed.
Denote by Sn the set of all distinct rooted trees with n labeled vertices. Define τn as the total height of a tree chosen at random in the set Sn, assuming that all the possible nn–1 choices are equally probable. The total height of a tree is defined as the sum of the heights of its vertices. The height of a vertex in a rooted tree is the distance from the vertex to the root of the tree, that is, the number of edges in the path from the vertex to the root. This paper is concerned with the distribution and the moments of τn and their asymptotic behavior as n → ∞.
A complementary decomposition of λKn into a graph G is an edge-disjoint decomposition of λKn into copies of G such that if each copy H of G is replaced by its complement in V(H) then the result is an edge-disjoint decomposition of λKn into copies of GC it is a self- complementary decomposition if G = Gc. The spectrum for the last self-complementary graph on at most 7 vertices is found.
The distribution (1) used previously by the author to represent polymerisation of several types of unit also prescribes quite general statistics for a random field on a random graph. One has the integral expression (3) for its partition function, but the multiple complex form of the integral makes the nature of the expected saddlepoint evaluation in the thermodynamic limit unclear. It is shown in Section 4 that such an evaluation at a real positive saddlepoint holds, and subsidiary conditions narrowing down the choice of saddlepoint are deduced in Section 6. The analysis simplifies greatly in what is termed the semi-coupled case; see Sections 3, 5 and 7. In Section 8 the analysis is applied to an Ising model on a random graph of fixed degree r + 1. The Curie point of this model is found to agree with that deduced by Spitzer for an Ising model on an r-branching tree. This agreement strengthens the conclusion of ‘locally tree-like' behaviour of the graph, seen as an important property in a number of contexts.
For a two-dimensional random walk {X (n) = (X(n)1, X(n)2)T, n ∈ ℕ0} with correlated components the first-crossing-time probability problem through unit-slope straight lines x2 = x1 - r(r = 0,1) is analysed. The p.g.f.'s for the first-crossing-time probabilities are expressed as solutions of a fourth-degree algebraic equation and are then exploited to obtain the first-crossing-time probabilities. Several additional results, including the mean first-crossing time and the probability of ultimate crossing, are also given.
By studying the minimum of moving maxima, that is the maxima taken over a sliding window of length k in an i.i.d. sequence, we obtain new results on the reliability of consecutive k-out-of-n systems. In particular, we give the reliability asymptotically with both k and n varying. The underlying method of our approach is to analyze the singularities of a generating function.
Let S be a finite linear space on v ≥ n2 –n points and b = n2+n+1–m lines, m ≧ 0, n ≧ 1, such that at most m points are not on n + 1 lines. If m ≧ 1, except if m = 1 and a unique point on n lines is on no line with two points, then S embeds uniquely in a projective plane of order n or is one exceptional case if n =4. If m ≦ 1 and if v ≧ n2 – 2√n + 3, + 6, the same conclusion holds, except possibly for the uniqueness.
1991 Mathematics subject classification (Amer. Math. Soc.) 05 B 05, 51 E 10.
A slightly strengthened version of the union-closed sets conjecture is proposed. It is shown that this version holds for a minimum set size of one or two and an examination of a boundary function shows that it holds for collections containing up to 19 sets. Some related conjectures are outlined.