To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The present paper explores a connection between two concepts arising from different fields of mathematics. The first concept, called vine, is a graphical model for dependent random variables. This concept first appeared in a work of Joe (1994), and the formal definition was given later by Cooke (1997). Vines have nowadays become an active research area whose applications can be found in probability theory and uncertainty analysis. The second concept, called MAT-freeness, is a combinatorial property in the theory of freeness of logarithmic derivation modules of hyperplane arrangements. This concept was first studied by Abe-Barakat-Cuntz-Hoge-Terao (2016), and soon afterwards investigated further by Cuntz-Mücksch (2020).
In the particular case of graphic arrangements, the last two authors (2023) recently proved that the MAT-freeness is completely characterized by the existence of certain edge-labeled graphs, called MAT-labeled graphs. In this paper, we first introduce a poset characterization of a vine. Then we show that, interestingly, there exists an explicit equivalence between the categories of locally regular vines and MAT-labeled graphs. In particular, we obtain an equivalence between the categories of regular vines and MAT-labeled complete graphs.
Several applications will be mentioned to illustrate the interaction between the two concepts. Notably, we give an affirmative answer to a question of Cuntz-Mücksch that MAT-freeness can be characterized by a generalization of the root poset in the case of graphic arrangements.
A graph G is called an $[s,t]$-graph if any induced subgraph of G of order s has size at least $t.$ We prove that every $2$-connected $[4,2]$-graph of order at least $7$ is pancyclic. This strengthens existing results. There are $2$-connected $[4,2]$-graphs which do not satisfy the Chvátal–Erdős condition on Hamiltonicity. We also determine the triangle-free graphs among $[p+2,p]$-graphs for a general $p.$
We prove a new lower bound for the almost 20-year-old problem of determining the smallest possible size of an essential cover of the $n$-dimensional hypercube $\{\pm 1\}^n$, that is, the smallest possible size of a collection of hyperplanes that forms a minimal cover of $\{\pm 1\}^n$ and such that, furthermore, every variable appears with a non-zero coefficient in at least one of the hyperplane equations. We show that such an essential cover must consist of at least $10^{-2}\cdot n^{2/3}/(\log n)^{2/3}$ hyperplanes, improving previous lower bounds of Linial–Radhakrishnan, of Yehuda–Yehudayoff, and of Araujo–Balogh–Mattos.
In this paper we consider positional games where the winning sets are edge sets of tree-universal graphs. Specifically, we show that in the unbiased Maker-Breaker game on the edges of the complete graph $K_n$, Maker has a strategy to claim a graph which contains copies of all spanning trees with maximum degree at most $cn/\log (n)$, for a suitable constant $c$ and $n$ being large enough. We also prove an analogous result for Waiter-Client games. Both of our results show that the building player can play at least as good as suggested by the random graph intuition. Moreover, they improve on a special case of earlier results by Johannsen, Krivelevich, and Samotij as well as Han and Yang for Maker-Breaker games.
An identity that is reminiscent of the Littlewood identity plays a fundamental role in recent proofs of the facts that alternating sign triangles are equinumerous with totally symmetric self-complementary plane partitions and that alternating sign trapezoids are equinumerous with holey cyclically symmetric lozenge tilings of a hexagon. We establish a bounded version of a generalization of this identity. Further, we provide combinatorial interpretations of both sides of the identity. The ultimate goal would be to construct a combinatorial proof of this identity (possibly via an appropriate variant of the Robinson-Schensted-Knuth correspondence) and its unbounded version, as this would improve the understanding of the mysterious relation between alternating sign trapezoids and plane partition objects.
We continue our study of exponent semigroups of rational matrices. Our main result is that the matricial dimension of a numerical semigroup is at most its multiplicity (the least generator), greatly improving upon the previous upper bound (the conductor). For many numerical semigroups, including all symmetric numerical semigroups, our upper bound is tight. Our construction uses combinatorially structured matrices and is parametrised by Kunz coordinates, which are central to enumerative problems in the study of numerical semigroups.
We show that the twin-width of every $n$-vertex $d$-regular graph is at most $n^{\frac{d-2}{2d-2}+o(1)}$ for any fixed integer $d \geq 2$ and that almost all $d$-regular graphs attain this bound. More generally, we obtain bounds on the twin-width of sparse Erdős–Renyi and regular random graphs, complementing the bounds in the denser regime due to Ahn, Chakraborti, Hendrey, Kim, and Oum.
Let $T$ be a tree on $t$ vertices. We prove that for every positive integer $k$ and every graph $G$, either $G$ contains $k$ pairwise vertex-disjoint subgraphs each having a $T$ minor, or there exists a set $X$ of at most $t(k-1)$ vertices of $G$ such that $G-X$ has no $T$ minor. The bound on the size of $X$ is best possible and improves on an earlier $f(t)k$ bound proved by Fiorini, Joret, and Wood (2013) with some fast-growing function $f(t)$. Moreover, our proof is short and simple.
A classical problem, due to Gerencsér and Gyárfás from 1967, asks how large a monochromatic connected component can we guarantee in any r-edge colouring of $K_n$? We consider how big a connected component we can guarantee in any r-edge colouring of $K_n$ if we allow ourselves to use up to s colours. This is actually an instance of a more general question of Bollobás from about 20 years ago which asks for a k-connected subgraph in the same setting. We complete the picture in terms of the approximate behaviour of the answer by determining it up to a logarithmic term, provided n is large enough. We obtain more precise results for certain regimes which solve a problem of Liu, Morris and Prince from 2007, as well as disprove a conjecture they pose in a strong form.
We also consider a generalisation in a similar direction of a question first considered by Erdős and Rényi in 1956, who considered given n and m, what is the smallest number of m-cliques which can cover all edges of $K_n$? This problem is essentially equivalent to the question of what is the minimum number of vertices that are certain to be incident to at least one edge of some colour in any r-edge colouring of $K_n$. We consider what happens if we allow ourselves to use up to s colours. We obtain a more complete understanding of the answer to this question for large n, in particular, determining it up to a constant factor for all $1\le s \le r$, as well as obtaining much more precise results for various ranges including the correct asymptotics for essentially the whole range.
In Chung–Lu random graphs, a classic model for real-world networks, each vertex is equipped with a weight drawn from a power-law distribution, and two vertices form an edge independently with probability proportional to the product of their weights. Chung–Lu graphs have average distance $O(\log\log n)$ and thus reproduce the small-world phenomenon, a key property of real-world networks. Modern, more realistic variants of this model also equip each vertex with a random position in a specific underlying geometry. The edge probability of two vertices then depends, say, inversely polynomially on their distance.
In this paper we study a generic augmented version of Chung–Lu random graphs. We analyze a model where the edge probability of two vertices can depend arbitrarily on their positions, as long as the marginal probability of forming an edge (for two vertices with fixed weights, one fixed position, and one random position) is as in a Chung–Lu random graph. The resulting class contains Chung–Lu random graphs, hyperbolic random graphs, and geometric inhomogeneous random graphs as special cases.
Our main result is that every random graph model in this general class has the same average distance as a Chung–Lu random graph, up to a factor of $1+o(1)$. This shows in particular that specific choices, such as taking the underlying geometry to be Euclidean, do not significantly influence the average distance. The proof also shows that every random graph model in our class has a giant component and polylogarithmic diameter with high probability.
The article considers systems of interacting particles on networks with adaptively coupled dynamics. Such processes appear frequently in natural processes and applications. Relying on the notion of graph convergence, we prove that for large systems the dynamics can be approximated by the corresponding continuum limit. Well-posedness of the latter is also established.
A graph $G$ is $q$-Ramsey for another graph $H$ if in any $q$-edge-colouring of $G$ there is a monochromatic copy of $H$, and the classic Ramsey problem asks for the minimum number of vertices in such a graph. This was broadened in the seminal work of Burr, Erdős, and Lovász to the investigation of other extremal parameters of Ramsey graphs, including the minimum degree.
It is not hard to see that if $G$ is minimally $q$-Ramsey for $H$ we must have $\delta (G) \ge q(\delta (H) - 1) + 1$, and we say that a graph $H$ is $q$-Ramsey simple if this bound can be attained. Grinshpun showed that this is typical of rather sparse graphs, proving that the random graph $G(n,p)$ is almost surely $2$-Ramsey simple when $\frac{\log n}{n} \ll p \ll n^{-2/3}$. In this paper, we explore this question further, asking for which pairs $p = p(n)$ and $q = q(n,p)$ we can expect $G(n,p)$ to be $q$-Ramsey simple.
We first extend Grinshpun’s result by showing that $G(n,p)$ is not just $2$-Ramsey simple, but is in fact $q$-Ramsey simple for any $q = q(n)$, provided $p \ll n^{-1}$ or $\frac{\log n}{n} \ll p \ll n^{-2/3}$. Next, when $p \gg \left ( \frac{\log n}{n} \right )^{1/2}$, we find that $G(n,p)$ is not $q$-Ramsey simple for any $q \ge 2$. Finally, we uncover some interesting behaviour for intermediate edge probabilities. When $n^{-2/3} \ll p \ll n^{-1/2}$, we find that there is some finite threshold $\tilde{q} = \tilde{q}(H)$, depending on the structure of the instance $H \sim G(n,p)$ of the random graph, such that $H$ is $q$-Ramsey simple if and only if $q \le \tilde{q}$. Aside from a couple of logarithmic factors, this resolves the qualitative nature of the Ramsey simplicity of the random graph over the full spectrum of edge probabilities.
Chow rings of flag varieties have bases of Schubert cycles $\sigma _u $, indexed by permutations. A major problem of algebraic combinatorics is to give a positive combinatorial formula for the structure constants of this basis. The celebrated Littlewood–Richardson rules solve this problem for special products $\sigma _u \cdot \sigma _v$, where u and v are p-Grassmannian permutations.
Building on work of Wyser, we introduce backstable clans to prove such a rule for the problem of computing the product $\sigma _u \cdot \sigma _v$ when u is p-inverse Grassmannian and v is q-inverse Grassmannian. By establishing several new families of linear relations among structure constants, we further extend this result to obtain a positive combinatorial rule for $\sigma _u \cdot \sigma _v$ in the case that u is covered in weak Bruhat order by a p-inverse Grassmannian permutation and v is a q-inverse Grassmannian permutation.
We investigate neighbourhood sizes in the enhanced power graph (also known as the cyclic graph) associated with a finite group. In particular, we characterise finite p-groups with the smallest maximum size for neighbourhoods of a nontrivial element in its enhanced power graph.
We construct a functor associating a cubical set to a (simple) graph. We show that cubical sets arising in this way are Kan complexes, and that the A-groups of a graph coincide with the homotopy groups of the associated Kan complex. We use this to prove a conjecture of Babson, Barcelo, de Longueville, and Laubenbacher from 2006, and a strong version of the Hurewicz theorem in discrete homotopy theory.
Assuming Stanley’s P-partitions conjecture holds, the regular Schur labeled skew shape posets are precisely the finite posets P with underlying set $\{1, 2, \ldots , |P|\}$ such that the P-partition generating function is symmetric and the set of linear extensions of P, denoted $\Sigma _L(P)$, is a left weak Bruhat interval in the symmetric group $\mathfrak {S}_{|P|}$. We describe the permutations in $\Sigma _L(P)$ in terms of reading words of standard Young tableaux when P is a regular Schur labeled skew shape poset, and classify $\Sigma _L(P)$’s up to descent-preserving isomorphism as P ranges over regular Schur labeled skew shape posets. The results obtained are then applied to classify the $0$-Hecke modules $\mathsf {M}_P$ associated with regular Schur labeled skew shape posets P up to isomorphism. Then we characterize regular Schur labeled skew shape posets as the finite posets P whose linear extensions form a dual plactic-closed subset of $\mathfrak {S}_{|P|}$. Using this characterization, we construct distinguished filtrations of $\mathsf {M}_P$ with respect to the Schur basis when P is a regular Schur labeled skew shape poset. Further issues concerned with the classification and decomposition of the $0$-Hecke modules $\mathsf {M}_P$ are also discussed.
In this article, we investigate the topological structure of large-scale interacting systems on infinite graphs, by constructing a suitable cohomology which we call the uniform cohomology. The central idea for the construction is the introduction of a class of functions called uniform functions. Uniform cohomology provides a new perspective for the identification of macroscopic observables from the microscopic system. As a straightforward application of our theory when the underlying graph has a free action of a group, we prove a certain decomposition theorem for shift-invariant closed uniform forms. This result is a uniform version in a very general setting of the decomposition result for shift-invariant closed $L^2$-forms originally proposed by Varadhan, which has repeatedly played a key role in the proof of the hydrodynamic limits of nongradient large-scale interacting systems. In a subsequent article, we use this result as a key to prove Varadhan’s decomposition theorem for a general class of large-scale interacting systems.
Recently, Alanazi et al. [‘Refining overpartitions by properties of nonoverlined parts’, Contrib. Discrete Math.17(2) (2022), 96–111] considered overpartitions wherein the nonoverlined parts must be $\ell $-regular, that is, the nonoverlined parts cannot be divisible by the integer $\ell $. In the process, they proved a general parity result for the corresponding enumerating functions. They also proved some specific congruences for the case $\ell =3$. In this paper we use elementary generating function manipulations to significantly extend this set of known congruences for these functions.
We study density and partition properties of polynomial equations in prime variables. We consider equations of the form $a_1h(x_1) + \cdots + a_sh(x_s)=b$, where the ai and b are fixed coefficients and h is an arbitrary integer polynomial of degree d. We establish that the natural necessary conditions for this equation to have a monochromatic non-constant solution with respect to any finite colouring of the prime numbers are also sufficient when the equation has at least $(1+o(1))d^2$ variables. We similarly characterize when such equations admit solutions over any set of primes with positive relative upper density. In both cases, we obtain lower bounds for the number of monochromatic or dense solutions in primes that are of the correct order of magnitude. Our main new ingredient is a uniform lower bound on the cardinality of a prime polynomial Bohr set.
We prove that any bounded degree regular graph with sufficiently strong spectral expansion contains an induced path of linear length. This is the first such result for expanders, strengthening an analogous result in the random setting by Draganić, Glock, and Krivelevich. More generally, we find long induced paths in sparse graphs that satisfy a mild upper-uniformity edge-distribution condition.