To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This article explores the relationship between Hessenberg varieties associated with semisimple operators with two eigenvalues and orbit closures of a spherical subgroup of the general linear group. We establish the specific conditions under which these semisimple Hessenberg varieties are irreducible. We determine the dimension of each irreducible Hessenberg variety under consideration and show that the number of such varieties is a Catalan number. We then apply a theorem of Brion to compute a polynomial representative for the cohomology class of each such variety. Additionally, we calculate the intersections of a standard (Schubert) hyperplane section of the flag variety with each of our Hessenberg varieties and prove that this intersection possesses a cohomological multiplicity-free property.
We introduce a family of polynomials, which arise in three distinct ways: in the large N expansion of a matrix integral, as a weighted enumeration of factorizations of permutations, and via the topological recursion. More explicitly, we interpret the complex Grassmannian $\mathrm {Gr}(M,N)$ as the space of $N \times N$ idempotent Hermitian matrices of rank M and develop a Weingarten calculus to integrate products of matrix elements over it. In the regime of large N and fixed ratio $\frac {M}{N}$, such integrals have expansions whose coefficients count factorizations of permutations into monotone sequences of transpositions, with each sequence weighted by a monomial in $t = 1 - \frac {N}{M}$. This gives rise to the desired polynomials, which specialise to the monotone Hurwitz numbers when $t = 1$. These so-called deformed monotone Hurwitz numbers satisfy a cut-and-join recursion, a one-point recursion, and the topological recursion. Furthermore, we conjecture on the basis of overwhelming empirical evidence that the deformed monotone Hurwitz numbers are real-rooted polynomials whose roots satisfy remarkable interlacing phenomena. An outcome of our work is the viewpoint that the topological recursion can be used to “topologise” sequences of polynomials, and we claim that the resulting families of polynomials may possess interesting properties.
Let n be a positive integer, let $0<p\leqslant p'\leqslant \frac 12$, and let $\ell \leqslant pn$ be a nonnegative integer. We prove that if $\mathcal {F},\mathcal {G}\subseteq \{0,1\}^n$ are two families whose cross intersections forbid $\ell $—that is, they satisfy $|A\cap B|\neq \ell $ for every $A\in \mathcal {F}$ and every $B\in \mathcal {G}$ – then, setting $t:= \min \{\ell ,pn-\ell \}$, we have the subgaussian bound
A random temporal graph is an Erdős-Rényi random graph $G(n,p)$, together with a random ordering of its edges. A path in the graph is called increasing if the edges on the path appear in increasing order. A set $S$ of vertices forms a temporal clique if for all $u,v \in S$, there is an increasing path from $u$ to $v$. Becker, Casteigts, Crescenzi, Kodric, Renken, Raskin and Zamaraev [(2023) Giant components in random temporal graphs. arXiv,2205.14888] proved that if $p=c\log n/n$ for $c\gt 1$, then, with high probability, there is a temporal clique of size $n-o(n)$. On the other hand, for $c\lt 1$, with high probability, the largest temporal clique is of size $o(n)$. In this note, we improve the latter bound by showing that, for $c\lt 1$, the largest temporal clique is of constant size with high probability.
For every positive integer d, we show that there must exist an absolute constant $c \gt 0$ such that the following holds: for any integer $n \geqslant cd^{7}$ and any red-blue colouring of the one-dimensional subspaces of $\mathbb{F}_{2}^{n}$, there must exist either a d-dimensional subspace for which all of its one-dimensional subspaces get coloured red or a 2-dimensional subspace for which all of its one-dimensional subspaces get coloured blue. This answers recent questions of Nelson and Nomoto, and confirms that for any even plane binary matroid N, the class of N-free, claw-free binary matroids is polynomially $\chi$-bounded.
Our argument will proceed via a reduction to a well-studied additive combinatorics problem, originally posed by Green: given a set $A \subset \mathbb{F}_{2}^{n}$ with density $\alpha \in [0,1]$, what is the largest subspace that we can find in $A+A$? Our main contribution to the story is a new result for this problem in the regime where $1/\alpha$ is large with respect to n, which utilises ideas from the recent breakthrough paper of Kelley and Meka on sets of integers without three-term arithmetic progressions.
A spline is an assignment of polynomials to the vertices of a graph whose edges are labeled by ideals, where the difference of two polynomials labeling adjacent vertices must belong to the corresponding ideal. The set of splines forms a ring. We consider spline rings where the underlying graph is the Cayley graph of a symmetric group generated by a collection of transpositions. These rings generalize the GKM construction for equivariant cohomology rings of flag, regular semisimple Hessenberg and permutohedral varieties. These cohomology rings carry two actions of the symmetric group $S_n$ whose graded characters are both of general interest in algebraic combinatorics. In this paper, we generalize the graded $S_n$-representations from the cohomologies of the above varieties to splines on Cayley graphs of $S_n$ and then (1) give explicit module and ring generators for whenever the $S_n$-generating set is minimal, (2) give a combinatorial characterization of when graded pieces of one $S_n$-representation is trivial, and (3) compute the first degree piece of both graded characters for all generating sets.
A partition is called a t-core if none of its hook lengths is a multiple of t. Let $a_t(n)$ denote the number of t-core partitions of n. Garvan, Kim and Stanton proved that for any $n\geq1$ and $m\geq1$, $a_t\big(t^mn-(t^2-1)/24\big)\equiv0\pmod{t^m}$, where $t\in\{5,7,11\}$. Let $A_{t,k}(n)$ denote the number of partition k-tuples of n with t-cores. Several scholars have been subsequently investigated congruence properties modulo high powers of 5 for $A_{5,k}(n)$ with $k\in\{2,3,4\}$. In this paper, by utilizing a recurrence related to the modular equation of fifth order, we establish dozens of congruence families modulo high powers of 5 satisfied by $A_{5,k}(n)$, where $4\leq k\leq25$. Moreover, we deduce an infinite family of internal congruences modulo high powers of 5 for $A_{5,4}(n)$. In particular, we generalize greatly a recent result on a congruence family modulo high powers of 5 enjoyed by $A_{5,4}(n)$, which was proved by Saikia, Sarma and Talukdar (Indian J. Pure Appl. Math., 2024). Finally, we conjecture that there exists a similar phenomenon for $A_{5,k}(n)$ with $k\geq26$.
that hold for all subsets A of the same discrete cubes. A general theory, analogous to the work of de Dios Pont, Greenfeld, Ivanisvili, and Madrid, is developed to show that the critical exponents are related by $p_{k,n} t_{k,n} = 2^k$. This is used to prove the three main results of the article:
• an explicit formula for $t_{k,2}$, which generalizes a theorem by Kane and Tao,
• two-sided asymptotic estimates for $t_{k,n}$ as $n\to\infty$ for a fixed $k\geqslant2$, which generalize a theorem by Shao, and
• a precise asymptotic formula for $t_{k,n}$ as $k\to\infty$ for a fixed $n\geqslant2$.
We analyze generating functions for trees and for connected subgraphs on the complete graph, and identify a single scaling profile which applies for both generating functions in a critical window. Our motivation comes from the analysis of the finite-size scaling of lattice trees and lattice animals on a high-dimensional discrete torus, for which we conjecture that the identical profile applies in dimensions $d \ge 8$.
We give an explicit quadratic Gröbner basis for generalized Chow rings of supersolvable built lattices, with the help of the operadic structure on geometric lattices introduced in a previous article. This shows that the generalized Chow rings associated to minimal building sets of supersolvable lattices are Koszul. As another consequence, we get that the cohomology algebras of the components of the extended modular operad in genus $0$ are Koszul.
In this paper, we study discrepancy questions for spanning subgraphs of $k$-uniform hypergraphs. Our main result is that, for any integers $k \ge 3$ and $r \ge 2$, any $r$-colouring of the edges of a $k$-uniform $n$-vertex hypergraph $G$ with minimum $(k-1)$-degree $\delta (G) \ge (1/2+o(1))n$ contains a tight Hamilton cycle with high discrepancy, that is, with at least $n/r+\Omega (n)$ edges of one colour. The minimum degree condition is asymptotically best possible and our theorem also implies a corresponding result for perfect matchings. Our tools combine various structural techniques such as Turán-type problems and hypergraph shadows with probabilistic techniques such as random walks and the nibble method. We also propose several intriguing problems for future research.
In this paper, we study the asymptotic behavior of the generalized Zagreb indices of the classical Erdős–Rényi (ER) random graph G(n, p), as $n\to\infty$. For any integer $k\ge1$, we first give an expression for the kth-order generalized Zagreb index in terms of the number of star graphs of various sizes in any simple graph. The explicit formulas for the first two moments of the generalized Zagreb indices of an ER random graph are then obtained from this expression. Based on the asymptotic normality of the numbers of star graphs of various sizes, several joint limit laws are established for a finite number of generalized Zagreb indices with a phase transition for p in different regimes. Finally, we provide a necessary and sufficient condition for any single generalized Zagreb index of G(n, p) to be asymptotic normal.
We use the framework of multivariate regular variation to analyse the extremal behaviour of preferential attachment models. To this end, we follow a directed linear preferential attachment model for a random, heavy-tailed number of steps in time and treat the incoming edge count of all existing nodes as a random vector of random length. By combining martingale properties, moment bounds and a Breiman type theorem we show that the resulting quantity is multivariate regularly varying, both as a vector of fixed length formed by the edge counts of a finite number of oldest nodes, and also as a vector of random length viewed in sequence space. A Pólya urn representation allows us to explicitly describe the extremal dependence between the degrees with the help of Dirichlet distributions. As a by-product of our analysis we establish new results for almost sure convergence of the edge counts in sequence space as the number of nodes goes to infinity.
In 1967, Gerencsér and Gyárfás [16] proved a result which is considered the starting point of graph-Ramsey theory: In every 2-coloring of $K_n$, there is a monochromatic path on $\lceil (2n+1)/3\rceil $ vertices, and this is best possible. There have since been hundreds of papers on graph-Ramsey theory with some of the most important results being motivated by a series of conjectures of Burr and Erdős [2, 3] regarding the Ramsey numbers of trees (settled in [31]), graphs with bounded maximum degree (settled in [5]), and graphs with bounded degeneracy (settled in [23]).
In 1993, Erdős and Galvin [13] began the investigation of a countably infinite analogue of the Gerencsér and Gyárfás result: What is the largest d such that in every $2$-coloring of $K_{\mathbb {N}}$ there is a monochromatic infinite path with upper density at least d? Erdős and Galvin showed that $2/3\leq d\leq 8/9$, and after a series of recent improvements, this problem was finally solved in [7] where it was shown that $d={(12+\sqrt {8})}/{17}$.
This paper begins a systematic study of quantitative countably infinite graph-Ramsey theory, focusing on infinite analogues of the Burr-Erdős conjectures. We obtain some results which are analogous to what is known in finite case, and other (unexpected) results which have no analogue in the finite case.
We give a crystal structure on the set of Gelfand–Tsetlin patterns (GTPs), which parametrize bases for finite-dimensional irreducible representations of the general linear Lie algebra. The crystal data are given in closed form and are expressed using tropical polynomial functions of the entries of the patterns. We prove that with this crystal structure, the natural bijection between GTPs and semistandard Young tableaux is a crystal isomorphism.
We introduce the notion of echeloned spaces – an order-theoretic abstraction of metric spaces. The first step is to characterize metrizable echeloned spaces. It turns out that morphisms between metrizable echeloned spaces are uniformly continuous or have a uniformly discrete image. In particular, every automorphism of a metrizable echeloned space is uniformly continuous, and for every metric space with midpoints, the automorphisms of the induced echeloned space are precisely the dilations.
Next, we focus on finite echeloned spaces. They form a Fraïssé class, and we describe its Fraïssé-limit both as the echeloned space induced by a certain homogeneous metric space and as the result of a random construction. Building on this, we show that the class of finite ordered echeloned spaces is Ramsey. The proof of this result combines a combinatorial argument by Nešetřil and Hubička with a topological-dynamical point of view due to Kechris, Pestov and Todorčević. Finally, using the method of Katětov functors due to Kubiś and Mašulović, we prove that the full symmetric group on a countable set topologically embeds into the automorphism group of the countable universal homogeneous echeloned space.
In their celebrated paper [CLR10], Caputo, Liggett and Richthammer proved Aldous’ conjecture and showed that for an arbitrary finite graph, the spectral gap of the interchange process is equal to the spectral gap of the underlying random walk. A crucial ingredient in the proof was the Octopus Inequality — a certain inequality of operators in the group ring $\mathbb{R}\left[{\mathrm{Sym}}_{n}\right]$ of the symmetric group. Here we generalise the Octopus Inequality and apply it to generalising the Caputo–Liggett–Richthammer Theorem to certain hypergraphs, proving some cases of a conjecture of Caputo.
The payoff in the Chow–Robbins coin-tossing game is the proportion of heads when you stop. Stopping to maximize expectation was addressed by Chow and Robbins (1965), who proved there exist integers ${k_n}$ such that it is optimal to stop at n tosses when heads minus tails is ${k_n}$. Finding ${k_n}$ was unsolved except for finitely many cases by computer. We prove an $o(n^{-1/4})$ estimate of the stopping boundary of Dvoretsky (1967), which then proves ${k_n} = \left\lceil {\alpha \sqrt n \,\, - 1/2\,\, + \,\,\frac{{\left( { - 2\zeta (\! -1/2)} \right)\sqrt \alpha }}{{\sqrt \pi }}{n^{ - 1/4}}} \right\rceil $ except for n in a set of density asymptotic to 0, at a power law rate. Here, $\alpha$ is the Shepp–Walker constant from the Brownian motion analog, and $\zeta$ is Riemann’s zeta function. An $n^{ - 1/4}$ dependence was conjectured by Christensen and Fischer (2022). Our proof uses moments involving Catalan and Shapiro Catalan triangle numbers which appear in a tree resulting from backward induction, and a generalized backward induction principle. It was motivated by an idea of Häggström and Wästlund (2013) to use backward induction of upper and lower Value bounds from a horizon, which they used numerically to settle a few cases. Christensen and Fischer, with much better bounds, settled many more cases. We use Skorohod’s embedding to get simple upper and lower bounds from the Brownian analog; our upper bound is the one found by Christensen and Fischer in another way. We use them first for yet many more examples and a conjecture, then algebraically in the tree, with feedback to get much sharper Value bounds near the border, and analytic results. Also, we give a formula that gives the exact optimal stop rule for all n up to about a third of a billion; it uses the analytic result plus terms arrived at empirically.
We present a short and simple proof of the celebrated hypergraph container theorem of Balogh–Morris–Samotij and Saxton–Thomason. On a high level, our argument utilises the idea of iteratively taking vertices of largest degree from an independent set and constructing a hypergraph of lower uniformity which preserves independent sets and inherits edge distribution. The original algorithms for constructing containers also remove in each step vertices of high degree, which are not in the independent set. Our modified algorithm postpones this until the end, which surprisingly results in a significantly simplified analysis.
Ruzsa asked whether there exist Fourier-uniform subsets of $\mathbb Z/N\mathbb Z$ with density $\alpha$ and 4-term arithmetic progression (4-AP) density at most $\alpha^C$, for arbitrarily large C. Gowers constructed Fourier uniform sets with density $\alpha$ and 4-AP density at most $\alpha^{4+c}$ for some small constant $c \gt 0$. We show that an affirmative answer to Ruzsa’s question would follow from the existence of an $N^{o(1)}$-colouring of [N] without symmetrically coloured 4-APs. For a broad and natural class of constructions of Fourier-uniform subsets of $\mathbb Z/N\mathbb Z$, we show that Ruzsa’s question is equivalent to our arithmetic Ramsey question.
We prove analogous results for all even-length APs. For each odd $k\geq 5$, we show that there exist $U^{k-2}$-uniform subsets of $\mathbb Z/N\mathbb Z$ with density $\alpha$ and k-AP density at most $\alpha^{c_k \log(1/\alpha)}$. We also prove generalisations to arbitrary one-dimensional patterns.