We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Geometric parameters in general and curvature in particular play a fundamental role in our understanding of the structure and functioning of real-world networks. Here, the discretisation of the Ricci curvature proposed by Forman is adapted to capture the global influence of the network topology on individual edges of a graph. This is implemented mathematically by assigning communicability distances to edges in the Forman–Ricci definition of curvature. We study analytically both the edge communicability curvature and the global graph curvature and give mathematical characterisations of them. The Forman–Ricci communicability curvature is interpreted ‘physically‘ on the basis of a non-conservative diffusion process taking place on the graph. We then solve analytically a toy model that allows us to understand the fundamental differences between edges with positive and negative Forman–Ricci communicability curvature. We complete the work by analysing three examples of applications of this new graph-theoretic invariant on real-world networks: (i) the network of airport flight connections in the USA, (ii) the neuronal network of the worm Caenorhabditis elegans and (iii) the collaboration network of authors in computational geometry, where we strengthen the many potentials of this new measure for the analysis of complex systems.
We consider the count of subgraphs with an arbitrary configuration of endpoints in the random-connection model based on a Poisson point process on ${\mathord{\mathbb R}}^d$. We present combinatorial expressions for the computation of the cumulants and moments of all orders of such subgraph counts, which allow us to estimate the growth of cumulants as the intensity of the underlying Poisson point process goes to infinity. As a consequence, we obtain a central limit theorem with explicit convergence rates under the Kolmogorov distance and connectivity bounds. Numerical examples are presented using a computer code in SageMath for the closed-form computation of cumulants of any order, for any type of connected subgraph, and for any configuration of endpoints in any dimension $d{\geq} 1$. In particular, graph connectivity estimates, Gram–Charlier expansions for density estimation, and correlation estimates for joint subgraph counting are obtained.
We give an explicit raising operator formula for the modified Macdonald polynomials $\tilde {H}_{\mu }(X;q,t)$, which follows from our recent formula for $\nabla $ on an LLT polynomial and the Haglund-Haiman-Loehr formula expressing modified Macdonald polynomials as sums of LLT polynomials. Our method just as easily yields a formula for a family of symmetric functions $\tilde {H}^{1,n}(X;q,t)$ that we call $1,n$-Macdonald polynomials, which reduce to a scalar multiple of $\tilde {H}_{\mu }(X;q,t)$ when $n=1$. We conjecture that the coefficients of $1,n$-Macdonald polynomials in terms of Schur functions belong to ${\mathbb N}[q,t]$, generalizing Macdonald positivity.
Given a fixed small graph H and a larger graph G, an H-factor is a collection of vertex-disjoint subgraphs $H'\subset G$, each isomorphic to H, that cover the vertices of G. If G is the complete graph $K_n$ equipped with independent U(0,1) edge weights, what is the lowest total weight of an H-factor? This problem has previously been considered for $H=K_2$, for example. We show that if H contains a cycle, then the minimum weight is sharply concentrated around some $L_n = \Theta(n^{1-1/d^*})$ (where $d^*$ is the maximum 1-density of any subgraph of H). Some of our results also hold for H-covers, where the copies of H are not required to be vertex-disjoint.
We address a core partition regularity problem in Ramsey theory by proving that every finite coloring of the positive integers contains monochromatic Pythagorean pairs (i.e., $x,y\in {\mathbb N}$ such that $x^2\pm y^2=z^2$ for some $z\in {\mathbb N}$). We also show that partitions generated by level sets of multiplicative functions taking finitely many values always contain Pythagorean triples. Our proofs combine known Gowers uniformity properties of aperiodic multiplicative functions with a novel and rather flexible approach based on concentration estimates of multiplicative functions.
We give a simplified version of the proofs that, outside of their isolated vertices, the complement of the enhanced power graph and of the power graph are connected and have diameter at most $3$.
We demonstrate the existence of K-multimagic squares of order N consisting of $N^2$ distinct integers whenever $N> 2K(K+1)$. This improves our earlier result [D. Flores, ‘A circle method approach to K-multimagic squares’, preprint (2024), arXiv:2406.08161] in which we only required $N+1$ distinct integers. Additionally, we present a direct method by which our analysis of the magic square system may be used to show the existence of $N \times N$ magic squares consisting of distinct kth powers when
$$ \begin{align*}N> \begin{cases} 2^{k+1} & \text{if}\ 2 \leqslant k \leqslant 4, \\ 2 \lceil k(\log k + 4.20032) \rceil & \text{if}\ k \geqslant 5, \end{cases}\end{align*} $$
improving on a recent result by Rome and Yamagishi [‘On the existence of magic squares of powers’, preprint (2024), arxiv:2406.09364].
Inspired by work of Andrews and Newman [‘Partitions and the minimal excludant’, Ann. Comb.23 (2019), 249–254] on the minimal excludant or ‘mex’ of partitions, we define four new classes of minimal excludants for overpartitions and establish relations to certain functions due to Ramanujan.
We study versions of the tree pigeonhole principle, $\mathsf {TT}^1$, in the context of Weihrauch-style computable analysis. The principle has previously been the subject of extensive research in reverse mathematics, an outstanding question of which investigation is whether $\mathsf {TT}^1$ is $\Pi ^1_1$-conservative over the ordinary pigeonhole principle, $\mathsf {RT}^1$. Using the recently introduced notion of the first-order part of an instance-solution problem, we formulate the analog of this question for Weihrauch reducibility, and give an affirmative answer. In combination with other results, we use this to show that unlike $\mathsf {RT}^1$, the problem $\mathsf {TT}^1$ is not Weihrauch requivalent to any first-order problem. Our proofs develop new combinatorial machinery for constructing and understanding solutions to instances of $\mathsf {TT}^1$.
The triangle removal states that if G contains $\varepsilon n^2$ edge-disjoint triangles, then G contains $\delta (\varepsilon )n^3$ triangles. Unfortunately, there are no sensible bounds on the order of growth of $\delta (\varepsilon )$, and at any rate, it is known that $\delta (\varepsilon )$ is not polynomial in $\varepsilon $. Csaba recently obtained an asymmetric variant of the triangle removal, stating that if G contains $\varepsilon n^2$ edge-disjoint triangles, then G contains $2^{-\operatorname {\mathrm {poly}}(1/\varepsilon )}\cdot n^5$ copies of $C_5$. To this end, he devised a new variant of Szemerédi’s regularity lemma. We obtain the following results:
• We first give a regularity-free proof of Csaba’s theorem, which improves the number of copies of $C_5$ to the optimal number $\operatorname {\mathrm {poly}}(\varepsilon )\cdot n^5$.
• We say that H is $K_3$-abundant if every graph containing $\varepsilon n^2$ edge-disjoint triangles has $\operatorname {\mathrm {poly}}(\varepsilon )\cdot n^{\lvert V(H)\rvert }$ copies of H. It is easy to see that a $K_3$-abundant graph must be triangle-free and tripartite. Given our first result, it is natural to ask if all triangle-free tripartite graphs are $K_3$-abundant. Our second result is that assuming a well-known conjecture of Ruzsa in additive number theory, the answer to this question is negative.
Our proofs use a mix of combinatorial, number-theoretic, probabilistic and Ramsey-type arguments.
A pebble tree is an ordered tree where each node receives some colored pebbles, in such a way that each unary node receives at least one pebble, and each subtree has either one more or as many leaves as pebbles of each color. We show that the contraction poset on pebble trees is isomorphic to the face poset of a convex polytope called pebble tree polytope. Beside providing intriguing generalizations of the classical permutahedra and associahedra, our motivation is that the faces of the pebble tree polytopes provide realizations as convex polytopes of all assocoipahedra constructed by K. Poirier and T. Tradler only as polytopal complexes.
We study Schubert polynomials using geometry of infinite-dimensional flag varieties and degeneracy loci. Applications include Graham-positivity of coefficients appearing in equivariant coproduct formulas and expansions of back-stable and enriched Schubert polynomials. We also construct an embedding of the type C flag variety and study the corresponding pullback map on (equivariant) cohomology rings.
We prove a full measurable version of Vizing’s theorem for bounded degree Borel graphs, that is, we show that every Borel graph $\mathcal {G}$ of degree uniformly bounded by $\Delta \in \mathbb {N}$ defined on a standard probability space $(X,\mu )$ admits a $\mu $-measurable proper edge coloring with $(\Delta +1)$-many colors. This answers a question of Marks [Question 4.9, J. Amer. Math. Soc. 29 (2016)] also stated in Kechris and Marks as a part of [Problem 6.13, survey (2020)], and extends the result of the author and Pikhurko [Adv. Math. 374, (2020)], who derived the same conclusion under the additional assumption that the measure $\mu $ is $\mathcal {G}$-invariant.
This paper initiates the explicit study of face numbers of matroid polytopes and their computation. We prove that, for the large class of split matroid polytopes, their face numbers depend solely on the number of cyclic flats of each rank and size, together with information on the modular pairs of cyclic flats. We provide a formula which allows us to calculate $f$-vectors without the need of taking convex hulls or computing face lattices. We discuss the particular cases of sparse paving matroids and rank two matroids, which are of independent interest due to their appearances in other combinatorial and geometric settings.
Schubert polynomials are polynomial representatives of Schubert classes in the cohomology of the complete flag variety and have a combinatorial formulation in terms of bumpless pipe dreams. Quantum double Schubert polynomials are polynomial representatives of Schubert classes in the torus-equivariant quantum cohomology of the complete flag variety, but no analogous combinatorial formulation had been discovered. We introduce a generalization of the bumpless pipe dreams called quantum bumpless pipe dreams, giving a novel combinatorial formula for quantum double Schubert polynomials as a sum of binomial weights of quantum bumpless pipe dreams. We give a bijective proof for this formula by showing that the sum of binomial weights satisfies a defining transition equation.
In the last two decades the study of random instances of constraint satisfaction problems (CSPs) has flourished across several disciplines, including computer science, mathematics and physics. The diversity of the developed methods, on the rigorous and non-rigorous side, has led to major advances regarding both the theoretical as well as the applied viewpoints. Based on a ceteris paribus approach in terms of the density evolution equations known from statistical physics, we focus on a specific prominent class of regular CSPs, the so-called occupation problems, and in particular on $r$-in-$k$ occupation problems. By now, out of these CSPs only the satisfiability threshold – the largest degree for which the problem admits asymptotically a solution – for the $1$-in-$k$ occupation problem has been rigorously established. Here we determine the satisfiability threshold of the $2$-in-$k$ occupation problem for all $k$. In the proof we exploit the connection of an associated optimization problem regarding the overlap of satisfying assignments to a fixed point problem inspired by belief propagation, a message passing algorithm developed for solving such CSPs.
Let Γ be a finite graph and let $A(\Gamma)$ be the corresponding right-angled Artin group. From an arbitrary basis $\mathcal B$ of $H^1(A(\Gamma),\mathbb F)$ over an arbitrary field, we construct a natural graph $\Gamma_{\mathcal B}$ from the cup product, called the cohomology basis graph. We show that $\Gamma_{\mathcal B}$ always contains Γ as a subgraph. This provides an effective way to reconstruct the defining graph Γ from the cohomology of $A(\Gamma)$, to characterize the planarity of the defining graph from the algebra of $A(\Gamma)$ and to recover many other natural graph-theoretic invariants. We also investigate the behaviour of the cohomology basis graph under passage to elementary subminors and show that it is not well-behaved under edge contraction.
In our previous paper, we gave a presentation of the torus-equivariant quantum K-theory ring $QK_{H}(Fl_{n+1})$ of the (full) flag manifold $Fl_{n+1}$ of type $A_{n}$ as a quotient of a polynomial ring by an explicit ideal. In this paper, we prove that quantum double Grothendieck polynomials, introduced by Lenart-Maeno, represent the corresponding (opposite) Schubert classes in the quantum K-theory ring $QK_{H}(Fl_{n+1})$ under this presentation. The main ingredient in our proof is an explicit formula expressing the semi-infinite Schubert class associated to the longest element of the finite Weyl group, which is proved by making use of the general Chevalley formula for the torus-equivariant K-group of the semi-infinite flag manifold associated to $SL_{n+1}(\mathbb {C})$.
We prove that a group $\Gamma $ admits a discrete, topological (equivalently, smooth) action on some simply connected 3-manifold if and only if $\Gamma $ has a Cayley complex embeddable—with certain natural restrictions—in one of the following four 3-manifolds: (i) $\mathbb {S}^3$, (ii) $\mathbb {R}^3$, (iii) $\mathbb {S}^2 \times \mathbb R$, and (iv) the complement of a tame Cantor set in $\mathbb {S}^3$. The fact that these are the only simply connected 3-manifolds that allow such actions is a consequence of the Thurston–Perelman geometrization theorem.
A left-variable word over an alphabet A is a word over $A \cup \{\star \}$ whose first letter is the distinguished symbol $\star $ standing for a placeholder. The ordered variable word theorem ($\mathsf {OVW}$), also known as Carlson–Simpson’s theorem, is a tree partition theorem, stating that for every finite alphabet A and every finite coloring of the words over A, there exists a word $c_0$ and an infinite sequence of left-variable words $w_1, w_2, \dots $ such that $\{ c_0 \cdot w_1[a_1] \cdot \dots \cdot w_k[a_k] : k \in \mathbb {N}, a_1, \dots , a_k \in A \}$ is monochromatic.
In this article, we prove that $\mathsf {OVW}$ is $\Pi ^0_4$-conservative over $\mathsf {RCA}_0 + \mathsf {B}\Sigma ^0_2$. This implies in particular that $\mathsf {OVW}$ does not imply $\mathsf {ACA}_0$ over $\mathsf {RCA}_0$. This is the first principle for which the only known separation from $\mathsf {ACA}_0$ involves non-standard models.