To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Counting independent sets in graphs and hypergraphs under a variety of restrictions is a classical question with a long history. It is the subject of the celebrated container method which found numerous spectacular applications over the years. We consider the question of how many independent sets we can have in a graph under structural restrictions. We show that any $n$-vertex graph with independence number $\alpha$ without $bK_a$ as an induced subgraph has at most $n^{O(1)} \cdot \alpha ^{O(\alpha )}$ independent sets. This substantially improves the trivial upper bound of $n^{\alpha },$ whenever $\alpha \le n^{o(1)}$ and gives a characterisation of graphs forbidding which allows for such an improvement. It is also in general tight up to a constant in the exponent since there exist triangle-free graphs with $\alpha ^{\Omega (\alpha )}$ independent sets. We also prove that if one in addition assumes the ground graph is chi-bounded one can improve the bound to $n^{O(1)} \cdot 2^{O(\alpha )}$ which is tight up to a constant factor in the exponent.
If G is a graph, then $X\subseteq V(G)$ is a general position set if for every two vertices $v,u\in X$ and every shortest $(u,v)$-path P, no inner vertex of P lies in X. We propose three algorithms to compute a largest general position set in G: an integer linear programming algorithm, a genetic algorithm and a simulated annealing algorithm. These approaches are supported by examples from different areas of graph theory.
We give an elementary approach utilizing only the divided difference formalism for obtaining expansions of Schubert polynomials that are manifestly nonnegative, by studying solutions to the equation $\sum Y_i\partial _i=\operatorname {id}$ on polynomials with no constant term. This in particular recovers the pipe dream and slide polynomial expansions. We also show that slide polynomials satisfy an analogue of the divided difference formalisms for Schubert polynomials and forest polynomials, which gives a simple method for extracting the coefficients of slide polynomials in the slide polynomial decomposition of an arbitrary polynomial.
We initiate a study of large deviations for block model random graphs in the dense regime. Following [14], we establish an LDP for dense block models, viewed as random graphons. As an application of our result, we study upper tail large deviations for homomorphism densities of regular graphs. We identify the existence of a ‘symmetric’ phase, where the graph, conditioned on the rare event, looks like a block model with the same block sizes as the generating graphon. In specific examples, we also identify the existence of a ‘symmetry breaking’ regime, where the conditional structure is not a block model with compatible dimensions. This identifies a ‘reentrant phase transition’ phenomenon for this problem – analogous to one established for Erdős–Rényi random graphs [13, 14]. Finally, extending the analysis of [34], we identify the precise boundary between the symmetry and symmetry breaking regimes for homomorphism densities of regular graphs and the operator norm on Erdős–Rényi bipartite graphs.
A graph $H$ is said to be common if the number of monochromatic labelled copies of $H$ in a red/blue edge colouring of a large complete graph is asymptotically minimised by a random colouring in which each edge is equally likely to be red or blue. We extend this notion to an off-diagonal setting. That is, we define a pair $(H_1,H_2)$ of graphs to be $(p,1-p)$-common if a particular linear combination of the density of $H_1$ in red and $H_2$ in blue is asymptotically minimised by a random colouring in which each edge is coloured red with probability $p$ and blue with probability $1-p$. Our results include off-diagonal extensions of several standard theorems on common graphs and novel results for common pairs of graphs with no natural analogue in the classical setting.
This article explores the relationship between Hessenberg varieties associated with semisimple operators with two eigenvalues and orbit closures of a spherical subgroup of the general linear group. We establish the specific conditions under which these semisimple Hessenberg varieties are irreducible. We determine the dimension of each irreducible Hessenberg variety under consideration and show that the number of such varieties is a Catalan number. We then apply a theorem of Brion to compute a polynomial representative for the cohomology class of each such variety. Additionally, we calculate the intersections of a standard (Schubert) hyperplane section of the flag variety with each of our Hessenberg varieties and prove that this intersection possesses a cohomological multiplicity-free property.
We introduce a family of polynomials, which arise in three distinct ways: in the large N expansion of a matrix integral, as a weighted enumeration of factorizations of permutations, and via the topological recursion. More explicitly, we interpret the complex Grassmannian $\mathrm {Gr}(M,N)$ as the space of $N \times N$ idempotent Hermitian matrices of rank M and develop a Weingarten calculus to integrate products of matrix elements over it. In the regime of large N and fixed ratio $\frac {M}{N}$, such integrals have expansions whose coefficients count factorizations of permutations into monotone sequences of transpositions, with each sequence weighted by a monomial in $t = 1 - \frac {N}{M}$. This gives rise to the desired polynomials, which specialise to the monotone Hurwitz numbers when $t = 1$. These so-called deformed monotone Hurwitz numbers satisfy a cut-and-join recursion, a one-point recursion, and the topological recursion. Furthermore, we conjecture on the basis of overwhelming empirical evidence that the deformed monotone Hurwitz numbers are real-rooted polynomials whose roots satisfy remarkable interlacing phenomena. An outcome of our work is the viewpoint that the topological recursion can be used to “topologise” sequences of polynomials, and we claim that the resulting families of polynomials may possess interesting properties.
Let n be a positive integer, let $0<p\leqslant p'\leqslant \frac 12$, and let $\ell \leqslant pn$ be a nonnegative integer. We prove that if $\mathcal {F},\mathcal {G}\subseteq \{0,1\}^n$ are two families whose cross intersections forbid $\ell $—that is, they satisfy $|A\cap B|\neq \ell $ for every $A\in \mathcal {F}$ and every $B\in \mathcal {G}$ – then, setting $t:= \min \{\ell ,pn-\ell \}$, we have the subgaussian bound
A random temporal graph is an Erdős-Rényi random graph $G(n,p)$, together with a random ordering of its edges. A path in the graph is called increasing if the edges on the path appear in increasing order. A set $S$ of vertices forms a temporal clique if for all $u,v \in S$, there is an increasing path from $u$ to $v$. Becker, Casteigts, Crescenzi, Kodric, Renken, Raskin and Zamaraev [(2023) Giant components in random temporal graphs. arXiv,2205.14888] proved that if $p=c\log n/n$ for $c\gt 1$, then, with high probability, there is a temporal clique of size $n-o(n)$. On the other hand, for $c\lt 1$, with high probability, the largest temporal clique is of size $o(n)$. In this note, we improve the latter bound by showing that, for $c\lt 1$, the largest temporal clique is of constant size with high probability.
For every positive integer d, we show that there must exist an absolute constant $c \gt 0$ such that the following holds: for any integer $n \geqslant cd^{7}$ and any red-blue colouring of the one-dimensional subspaces of $\mathbb{F}_{2}^{n}$, there must exist either a d-dimensional subspace for which all of its one-dimensional subspaces get coloured red or a 2-dimensional subspace for which all of its one-dimensional subspaces get coloured blue. This answers recent questions of Nelson and Nomoto, and confirms that for any even plane binary matroid N, the class of N-free, claw-free binary matroids is polynomially $\chi$-bounded.
Our argument will proceed via a reduction to a well-studied additive combinatorics problem, originally posed by Green: given a set $A \subset \mathbb{F}_{2}^{n}$ with density $\alpha \in [0,1]$, what is the largest subspace that we can find in $A+A$? Our main contribution to the story is a new result for this problem in the regime where $1/\alpha$ is large with respect to n, which utilises ideas from the recent breakthrough paper of Kelley and Meka on sets of integers without three-term arithmetic progressions.
A spline is an assignment of polynomials to the vertices of a graph whose edges are labeled by ideals, where the difference of two polynomials labeling adjacent vertices must belong to the corresponding ideal. The set of splines forms a ring. We consider spline rings where the underlying graph is the Cayley graph of a symmetric group generated by a collection of transpositions. These rings generalize the GKM construction for equivariant cohomology rings of flag, regular semisimple Hessenberg and permutohedral varieties. These cohomology rings carry two actions of the symmetric group $S_n$ whose graded characters are both of general interest in algebraic combinatorics. In this paper, we generalize the graded $S_n$-representations from the cohomologies of the above varieties to splines on Cayley graphs of $S_n$ and then (1) give explicit module and ring generators for whenever the $S_n$-generating set is minimal, (2) give a combinatorial characterization of when graded pieces of one $S_n$-representation is trivial, and (3) compute the first degree piece of both graded characters for all generating sets.
A partition is called a t-core if none of its hook lengths is a multiple of t. Let $a_t(n)$ denote the number of t-core partitions of n. Garvan, Kim and Stanton proved that for any $n\geq1$ and $m\geq1$, $a_t\big(t^mn-(t^2-1)/24\big)\equiv0\pmod{t^m}$, where $t\in\{5,7,11\}$. Let $A_{t,k}(n)$ denote the number of partition k-tuples of n with t-cores. Several scholars have been subsequently investigated congruence properties modulo high powers of 5 for $A_{5,k}(n)$ with $k\in\{2,3,4\}$. In this paper, by utilizing a recurrence related to the modular equation of fifth order, we establish dozens of congruence families modulo high powers of 5 satisfied by $A_{5,k}(n)$, where $4\leq k\leq25$. Moreover, we deduce an infinite family of internal congruences modulo high powers of 5 for $A_{5,4}(n)$. In particular, we generalize greatly a recent result on a congruence family modulo high powers of 5 enjoyed by $A_{5,4}(n)$, which was proved by Saikia, Sarma and Talukdar (Indian J. Pure Appl. Math., 2024). Finally, we conjecture that there exists a similar phenomenon for $A_{5,k}(n)$ with $k\geq26$.
that hold for all subsets A of the same discrete cubes. A general theory, analogous to the work of de Dios Pont, Greenfeld, Ivanisvili, and Madrid, is developed to show that the critical exponents are related by $p_{k,n} t_{k,n} = 2^k$. This is used to prove the three main results of the article:
• an explicit formula for $t_{k,2}$, which generalizes a theorem by Kane and Tao,
• two-sided asymptotic estimates for $t_{k,n}$ as $n\to\infty$ for a fixed $k\geqslant2$, which generalize a theorem by Shao, and
• a precise asymptotic formula for $t_{k,n}$ as $k\to\infty$ for a fixed $n\geqslant2$.
We analyze generating functions for trees and for connected subgraphs on the complete graph, and identify a single scaling profile which applies for both generating functions in a critical window. Our motivation comes from the analysis of the finite-size scaling of lattice trees and lattice animals on a high-dimensional discrete torus, for which we conjecture that the identical profile applies in dimensions $d \ge 8$.
We give an explicit quadratic Gröbner basis for generalized Chow rings of supersolvable built lattices, with the help of the operadic structure on geometric lattices introduced in a previous article. This shows that the generalized Chow rings associated to minimal building sets of supersolvable lattices are Koszul. As another consequence, we get that the cohomology algebras of the components of the extended modular operad in genus $0$ are Koszul.
In this paper, we study discrepancy questions for spanning subgraphs of $k$-uniform hypergraphs. Our main result is that, for any integers $k \ge 3$ and $r \ge 2$, any $r$-colouring of the edges of a $k$-uniform $n$-vertex hypergraph $G$ with minimum $(k-1)$-degree $\delta (G) \ge (1/2+o(1))n$ contains a tight Hamilton cycle with high discrepancy, that is, with at least $n/r+\Omega (n)$ edges of one colour. The minimum degree condition is asymptotically best possible and our theorem also implies a corresponding result for perfect matchings. Our tools combine various structural techniques such as Turán-type problems and hypergraph shadows with probabilistic techniques such as random walks and the nibble method. We also propose several intriguing problems for future research.
In this paper, we study the asymptotic behavior of the generalized Zagreb indices of the classical Erdős–Rényi (ER) random graph G(n, p), as $n\to\infty$. For any integer $k\ge1$, we first give an expression for the kth-order generalized Zagreb index in terms of the number of star graphs of various sizes in any simple graph. The explicit formulas for the first two moments of the generalized Zagreb indices of an ER random graph are then obtained from this expression. Based on the asymptotic normality of the numbers of star graphs of various sizes, several joint limit laws are established for a finite number of generalized Zagreb indices with a phase transition for p in different regimes. Finally, we provide a necessary and sufficient condition for any single generalized Zagreb index of G(n, p) to be asymptotic normal.
We use the framework of multivariate regular variation to analyse the extremal behaviour of preferential attachment models. To this end, we follow a directed linear preferential attachment model for a random, heavy-tailed number of steps in time and treat the incoming edge count of all existing nodes as a random vector of random length. By combining martingale properties, moment bounds and a Breiman type theorem we show that the resulting quantity is multivariate regularly varying, both as a vector of fixed length formed by the edge counts of a finite number of oldest nodes, and also as a vector of random length viewed in sequence space. A Pólya urn representation allows us to explicitly describe the extremal dependence between the degrees with the help of Dirichlet distributions. As a by-product of our analysis we establish new results for almost sure convergence of the edge counts in sequence space as the number of nodes goes to infinity.
In 1967, Gerencsér and Gyárfás [16] proved a result which is considered the starting point of graph-Ramsey theory: In every 2-coloring of $K_n$, there is a monochromatic path on $\lceil (2n+1)/3\rceil $ vertices, and this is best possible. There have since been hundreds of papers on graph-Ramsey theory with some of the most important results being motivated by a series of conjectures of Burr and Erdős [2, 3] regarding the Ramsey numbers of trees (settled in [31]), graphs with bounded maximum degree (settled in [5]), and graphs with bounded degeneracy (settled in [23]).
In 1993, Erdős and Galvin [13] began the investigation of a countably infinite analogue of the Gerencsér and Gyárfás result: What is the largest d such that in every $2$-coloring of $K_{\mathbb {N}}$ there is a monochromatic infinite path with upper density at least d? Erdős and Galvin showed that $2/3\leq d\leq 8/9$, and after a series of recent improvements, this problem was finally solved in [7] where it was shown that $d={(12+\sqrt {8})}/{17}$.
This paper begins a systematic study of quantitative countably infinite graph-Ramsey theory, focusing on infinite analogues of the Burr-Erdős conjectures. We obtain some results which are analogous to what is known in finite case, and other (unexpected) results which have no analogue in the finite case.