We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this work, we investigate the arithmetic properties of $b_{5^k}(n)$, which counts the partitions of n where no part is divisible by $5^k$. By constructing generating functions for $b_{5^k}(n)$ across specific arithmetic progressions, we establish a set of Ramanujan-type congruences.
Andrews and El Bachraoui [‘On two-colour partitions with odd smallest part’, Preprint, arXiv:2410.14190] explored many integer partitions in two colours, some of which are generated by the mock theta functions of third order of Ramanujan and Watson. They also posed questions regarding combinatorial proofs for these results. In this paper, we establish bijections to provide a combinatorial proof of one of these results and a companion result. We give analytic proofs of further companion results.
We study the length of short cycles on uniformly random metric maps (also known as ribbon graphs) of large genus using a Teichmüller theory approach. We establish that, as the genus tends to infinity, the length spectrum converges to a Poisson point process with an explicit intensity. This result extends the work of Janson and Louf to the multi-faced case.
It is consistent relative to an inaccessible cardinal that ZF+DC holds, the hypergraph of equilateral triangles on a given Euclidean space has countable chromatic number, while the hypergraph of isosceles triangles on $\mathbb {R}^2$ does not.
In this paper, we establish Newton–Maclaurin-type inequalities for functions arising from linear combinations of primitively symmetric polynomials. This generalization extends the classical Newton–Maclaurin inequality to a broader class of functions.
We show that every $(n,d,\lambda )$-graph contains a Hamilton cycle for sufficiently large $n$, assuming that $d\geq \log ^{6}n$ and $\lambda \leq cd$, where $c=\frac {1}{70000}$. This significantly improves a recent result of Glock, Correia, and Sudakov, who obtained a similar result for $d$ that grows polynomially with $n$. The proof is based on a new result regarding the second largest eigenvalue of the adjacency matrix of a subgraph induced by a random subset of vertices, combined with a recent result on connecting designated pairs of vertices by vertex-disjoint paths in $(n,d,\lambda )$-graphs. We believe that the former result is of independent interest and will have further applications.
In this study, we introduce multiple zeta functions with structures similar to those of symmetric functions such as the Schur P-, Schur Q-, symplectic and orthogonal functions in representation theory. Their basic properties, such as the domain of absolute convergence, are first considered. Then, by restricting ourselves to the truncated multiple zeta functions, we derive the Pfaffian expression of the Schur Q-multiple zeta functions, the sum formula for Schur P- and Schur Q-multiple zeta functions, the determinant expressions of symplectic and orthogonal Schur multiple zeta functions by making an assumption on variables. Finally, we generalize those to the quasi-symmetric functions.
Let W be a group endowed with a finite set S of generators. A representation $(V,\rho )$ of W is called a reflection representation of $(W,S)$ if $\rho (s)$ is a (generalized) reflection on V for each generator $s \in S$. In this article, we prove that for any irreducible reflection representation V, all the exterior powers $\bigwedge ^d V$, $d = 0, 1, \dots , \dim V$, are irreducible W-modules, and they are non-isomorphic to each other. This extends a theorem of R. Steinberg which is stated for Euclidean reflection groups. Moreover, we prove that the exterior powers (except for the 0th and the highest power) of two non-isomorphic reflection representations always give non-isomorphic W-modules. This allows us to construct numerous pairwise non-isomorphic irreducible representations for such groups, especially for Coxeter groups.
We examine bicoset digraphs and their natural properties from the point of view of symmetry. We then consider connected bicoset digraphs that are X-joins with collections of empty graphs, and show that their automorphism groups can be obtained from their natural irreducible quotients. We further show that such digraphs can be recognised from their connection sets.
This paper is concerned with the growth rate of susceptible–infectious–recovered epidemics with general infectious period distribution on random intersection graphs. This type of graph is characterised by the presence of cliques (fully connected subgraphs). We study epidemics on random intersection graphs with a mixed Poisson degree distribution and show that in the limit of large population sizes the number of infected individuals grows exponentially during the early phase of the epidemic, as is generally the case for epidemics on asymptotically unclustered networks. The Malthusian parameter is shown to satisfy a variant of the classical Euler–Lotka equation. To obtain these results we construct a coupling of the epidemic process and a continuous-time multitype branching process, where the type of an individual is (essentially) given by the length of its infectious period. Asymptotic results are then obtained via an embedded single-type Crump–Mode–Jagers branching process.
A tantalizing open problem, posed independently by Stiebitz in 1995 and by Alon in 1996 and again in 2006, asks whether for every pair of integers $s,t \ge 1$ there exists a finite number $F(s,t)$ such that the vertex set of every digraph of minimum out-degree at least $F(s,t)$ can be partitioned into non-empty parts $A$ and $B$ such that the subdigraphs induced on $A$ and $B$ have minimum out-degree at least $s$ and $t$, respectively.
In this short note, we prove that if $F(2,2)$ exists, then all the numbers $F(s,t)$ with $s,t\ge 1$ exist and satisfy $F(s,t)=\Theta (s+t)$. In consequence, the problem of Alon and Stiebitz reduces to the case $s=t=2$. Moreover, the numbers $F(s,t)$ with $s,t \ge 2$ either all exist and grow linearly, or all of them do not exist.
We show that the sets of $d$-dimensional Latin hypercubes over a non-empty set $X$, with $d$ running over the positive integers, determine an operad which is isomorphic to a sub-operad of the endomorphism operad of $X$. We generalise this to categories with finite products, and then further to internal versions for certain Cartesian closed monoidal categories with pullbacks.
An ordered r-matching is an r-uniform hypergraph matching equipped with an ordering on its vertices. These objects can be viewed as natural generalisations of r-dimensional orders. The theory of ordered 2-matchings is well developed and has connections and applications to extremal and enumerative combinatorics, probability and geometry. On the other hand, in the case $r \ge 3$ much less is known, largely due to a lack of powerful bijective tools. Recently, Dudek, Grytczuk and Ruciński made some first steps towards a general theory of ordered r-matchings, and in this paper we substantially improve several of their results and introduce some new directions of study. Many intriguing open questions remain.
For a nondegenerate r-graph F, large n, and t in the regime $[0, c_{F} n]$, where $c_F>0$ is a constant depending only on F, we present a general approach for determining the maximum number of edges in an n-vertex r-graph that does not contain $t+1$ vertex-disjoint copies of F. In fact, our method results in a rainbow version of the above result and includes a characterization of the extremal constructions.
Our approach applies to many well-studied hypergraphs (including graphs) such as the edge-critical graphs, the Fano plane, the generalized triangles, hypergraph expansions, the expanded triangles, and hypergraph books. Our results extend old results of Erdős [13], Simonovits [76], and Moon [58] on complete graphs, and can be viewed as a step toward a general density version of the classical Corrádi–Hajnal [10] and Hajnal–Szemerédi [32] theorems.
Our method relies on a novel understanding of the general properties of nondegenerate Turán problems, which we refer to as smoothness and boundedness. These properties are satisfied by a broad class of nondegenerate hypergraphs and appear to be worthy of future exploration.
We give an affirmative answer to a long-standing conjecture of Thomassen, stating that every sufficiently highly connected graph has a k-vertex-connected orientation. We prove that a connectivity of order $O(k^2)$ suffices. As a key tool, we show that for every pair of positive integers d and t, every $(t \cdot h(d))$-connected graph contains t edge-disjoint d-rigid (in particular, d-connected) spanning subgraphs, where $h(d) = 10d(d+1)$. This also implies a positive answer to the conjecture of Kriesell that every sufficiently highly connected graph G contains a spanning tree T such that $G-E(T)$ is k-connected.
The preferential attachment model is a natural and popular random graph model for a growing network that contains very well-connected ‘hubs’. We study the higher-order connectivity of such a network by investigating the topological properties of its clique complex. We concentrate on the Betti numbers, a sequence of topological invariants of the complex related to the numbers of holes (equivalently, repeated connections) of different dimensions. We prove that the expected Betti numbers grow sublinearly fast, with the trivial exceptions of those at dimensions 0 and 1. Our result also shows that preferential attachment graphs undergo infinitely many phase transitions within the parameter regime where the limiting degree distribution has an infinite variance. Regarding higher-order connectivity, our result shows that preferential attachment favors higher-order connectivity. We illustrate our theoretical results with simulations.
We prove that, for any finite set of minimal r-graph patterns, there is a finite family $\mathcal F$ of forbidden r-graphs such that the extremal Turán constructions for $\mathcal F$ are precisely the maximum r-graphs obtainable from mixing the given patterns in any way via blowups and recursion. This extends the result by the second author [30], where the above statement was established for a single pattern.
We present two applications of this result. First, we construct a finite family $\mathcal F$ of $3$-graphs such that there are exponentially many maximum $\mathcal F$-free $3$-graphs of each large order n and, moreover, the corresponding Turán problem is not finitely stable. Second, we show that there exists a finite family $\mathcal {F}$ of $3$-graphs whose feasible region function attains its maximum on a Cantor-type set of positive Hausdorff dimension.
We construct skew corner-free subsets of $[n]^2$ of size $n^2\exp(\!-O(\sqrt{\log n}))$, thereby improving on recent bounds of the form $\Omega(n^{5/4})$ obtained by Pohoata and Zakharov. We also prove that any such set has size at most $O(n^2(\log n)^{-c})$ for some absolute constant $c \gt 0$. This improves on the previously best known upper bound $O(n^2(\log\log n)^{-c})$, coming from Shkredov’s work on the corners theorem.
Thomassen’s chord conjecture from 1976 states that every longest cycle in a $3$-connected graph has a chord. The circumference $c(G)$ and induced circumference $c'(G)$ of a graph G are the length of its longest cycles and the length of its longest chordless cycles, respectively. Harvey [‘A cycle of maximum order in a graph of high minimum degree has a chord’, Electron. J. Combin.24(4) (2017), Article no. 4.33, 8 pages] proposed the stronger conjecture: every $2$-connected graph G with minimum degree at least $3$ has $c(G)\geq c'(G)+2$. This conjecture implies Thomassen’s chord conjecture. We observe that wheels are the unique Hamiltonian graphs for which the circumference and the induced circumference differ by exactly one. Thus, we need only consider non-Hamiltonian graphs for Harvey’s conjecture. We propose a conjecture involving wheels that is equivalent to Harvey’s conjecture on non-Hamiltonian graphs. A graph is $\ell $-holed if all its holes have length exactly $\ell $. We prove that Harvey’s conjecture and hence also Thomassen’s conjecture hold for $\ell $-holed graphs and graphs with a small induced circumference.