We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove that any bounded degree regular graph with sufficiently strong spectral expansion contains an induced path of linear length. This is the first such result for expanders, strengthening an analogous result in the random setting by Draganić, Glock, and Krivelevich. More generally, we find long induced paths in sparse graphs that satisfy a mild upper-uniformity edge-distribution condition.
We study the problem of identifying a small number $k\sim n^\theta$, $0\lt \theta \lt 1$, of infected individuals within a large population of size $n$ by testing groups of individuals simultaneously. All tests are conducted concurrently. The goal is to minimise the total number of tests required. In this paper, we make the (realistic) assumption that tests are noisy, that is, that a group that contains an infected individual may return a negative test result or one that does not contain an infected individual may return a positive test result with a certain probability. The noise need not be symmetric. We develop an algorithm called SPARC that correctly identifies the set of infected individuals up to $o(k)$ errors with high probability with the asymptotically minimum number of tests. Additionally, we develop an algorithm called SPEX that exactly identifies the set of infected individuals w.h.p. with a number of tests that match the information-theoretic lower bound for the constant column design, a powerful and well-studied test design.
We settle the question of where exactly do the reduced Kronecker coefficients lie on the spectrum between the Littlewood-Richardson and Kronecker coefficients by showing that every Kronecker coefficient of the symmetric group is equal to a reduced Kronecker coefficient by an explicit construction. This implies the equivalence of an open problem by Stanley from 2000 and an open problem by Kirillov from 2004 about combinatorial interpretations of these two families of coefficients. Moreover, as a corollary, we deduce that deciding the positivity of reduced Kronecker coefficients is ${\textsf {NP}}$-hard, and computing them is ${{{\textsf {#P}}}}$-hard under parsimonious many-one reductions. Our proof also provides an explicit isomorphism of the corresponding highest weight vector spaces.
Inspired by Adler’s idea on VC minimal theories [1], we introduce VC-minimal complexity. We show that for any $N\in \mathbb {N}^{>0}$, there is $k_N>0$ such that for any finite bipartite graph $(X,Y;E)$ with VC-minimal complexity $< N$, there exist $X'\subseteq X$, $Y'\subseteq Y$ with $|X'|\geq k_N |X|$, $|Y'|\geq k_N |Y|$ such that $X'\times Y' \subseteq E$ or $X'\times Y'\cap E=\emptyset $.
We give an explicit formula for the Frobenius number of triples associated with the Diophantine equation $x^2+y^2=z^3$, that is, the largest positive integer that can only be represented in p ways by combining the three integers of the solutions of $x^2+y^2=z^3$. For the equation $x^2+y^2=z^2$, the Frobenius number has already been given. Our approach can be extended to the general equation $x^2+y^2=z^r$ for $r>3$.
We investigate the set $T_{n}$ of the possible number of triangles in a graph on n vertices. The first main result says that every natural number less than $\binom {n}{3} - (\sqrt {2}+o(1) )n^{3/2} $ belongs to $T_{n}$. On the other hand, we show that there is a number $m = \binom {n}{3}-( \sqrt {2} +o(1))n^{3/2}$ that is not a member of $T_{n}$. In addition, we prove that there are two interlacing sequences $\binom {n}{3} - ( \sqrt {2} + o(1) )n^{3/2} = c_{1} \le d_{1} \le c_{2} \le d_{2} \le \cdots \le c_{s} \le d_{s} = \binom {n}{3}$ with $| c_{t} - d_{t}| = n-2-\binom {s - t +1}{2}$ such that $( c_{t}, d_{t} ) \cap T_{n} = \emptyset $ for all t. Moreover, we obtain a generalisation of these results for the set of the possible number of copies of a connected graph H in a graph on n vertices.
Let ${\mathbf {x}}_{n \times n}$ be an $n \times n$ matrix of variables, and let ${\mathbb {F}}[{\mathbf {x}}_{n \times n}]$ be the polynomial ring in these variables over a field ${\mathbb {F}}$. We study the ideal $I_n \subseteq {\mathbb {F}}[{\mathbf {x}}_{n \times n}]$ generated by all row and column variable sums and all products of two variables drawn from the same row or column. We show that the quotient ${\mathbb {F}}[{\mathbf {x}}_{n \times n}]/I_n$ admits a standard monomial basis determined by Viennot’s shadow line avatar of the Schensted correspondence. As a corollary, the Hilbert series of ${\mathbb {F}}[{\mathbf {x}}_{n \times n}]/I_n$ is the generating function of permutations in ${\mathfrak {S}}_n$ by the length of their longest increasing subsequence. Along the way, we describe a ‘shadow junta’ basis of the vector space of k-local permutation statistics. We also calculate the structure of ${\mathbb {F}}[{\mathbf {x}}_{n \times n}]/I_n$ as a graded ${\mathfrak {S}}_n \times {\mathfrak {S}}_n$-module.
We characterize Borel line graphs in terms of 10 forbidden induced subgraphs, namely the nine finite graphs from the classical result of Beineke together with a 10th infinite graph associated with the equivalence relation $\mathbb {E}_0$ on the Cantor space. As a corollary, we prove a partial converse to the Feldman–Moore theorem, which allows us to characterize all locally countable Borel line graphs in terms of their Borel chromatic numbers.
We extend the Kechris–Pestov–Todorčević correspondence to weak Fraïssé categories and automorphism groups of generic objects. The new ingredient is the weak Ramsey property. We demonstrate the theory on several examples including monoid categories, the category of almost linear orders and categories of strong embeddings of trees.
Describing the equality conditions of the Alexandrov–Fenchel inequality [Ale37] has been a major open problem for decades. We prove that in the case of convex polytopes, this description is not in the polynomial hierarchy unless the polynomial hierarchy collapses to a finite level. This is the first hardness result for the problem and is a complexity counterpart of the recent result by Shenfeld and van Handel [SvH23], which gave a geometric characterization of the equality conditions. The proof involves Stanley’s [Sta81] order polytopes and employs poset theoretic technology.
Given a permutation statistic $\operatorname {\mathrm {st}}$, define its inverse statistic $\operatorname {\mathrm {ist}}$ by . We give a general approach, based on the theory of symmetric functions, for finding the joint distribution of $\operatorname {\mathrm {st}}_{1}$ and $\operatorname {\mathrm {ist}}_{2}$ whenever $\operatorname {\mathrm {st}}_{1}$ and $\operatorname {\mathrm {st}}_{2}$ are descent statistics: permutation statistics that depend only on the descent composition. We apply this method to a number of descent statistics, including the descent number, the peak number, the left peak number, the number of up-down runs and the major index. Perhaps surprisingly, in many cases the polynomial giving the joint distribution of $\operatorname {\mathrm {st}}_{1}$ and $\operatorname {\mathrm {ist}}_{2}$ can be expressed as a simple sum involving products of the polynomials giving the (individual) distributions of $\operatorname {\mathrm {st}}_{1}$ and $\operatorname {\mathrm {st}}_{2}$. Our work leads to a rederivation of Stanley’s generating function for doubly alternating permutations, as well as several conjectures concerning real-rootedness and $\gamma $-positivity.
We study the counts of smooth permutations and smooth polynomials over finite fields. For both counts we prove an estimate with an error term that matches the error term found in the integer setting by de Bruijn more than 70 years ago. The main term is the usual Dickman $\rho$ function, but with its argument shifted.
We determine the order of magnitude of $\log(p_{n,m}/\rho(n/m))$ where $p_{n,m}$ is the probability that a permutation on n elements, chosen uniformly at random, is m-smooth.
We uncover a phase transition in the polynomial setting: the probability that a polynomial of degree n in $\mathbb{F}_q$ is m-smooth changes its behaviour at $m\approx (3/2)\log_q n$.
Let $r_5(N)$ be the largest cardinality of a set in $\{1,\ldots,N\}$ which does not contain 5 elements in arithmetic progression. Then there exists a constant $c\in (0,1)$ such that
Our work is a consequence of recent improved bounds on the $U^4$-inverse theorem of J. Leng and the fact that 3-step nilsequences may be approximated by locally cubic functions on shifted Bohr sets. This, combined with the density increment strategy of Heath–Brown and Szemerédi, codified by Green and Tao, gives the desired result.
Using the special value at $u=1$ of Artin–Ihara L-functions, we associate to every $\mathbb {Z}$-cover of a finite connected graph a polynomial, which we call the Ihara polynomial. We show that the number of spanning trees for the finite intermediate graphs of such a cover can be expressed in terms of the Pierce–Lehmer sequence associated to a factor of the Ihara polynomial. This allows us to express the asymptotic growth of the number of spanning trees in terms of the Mahler measure of this polynomial. Specialising to the situation where the base graph is a bouquet or the dumbbell graph gives us back previous results in the literature for circulant and I-graphs (including the generalised Petersen graphs). We also express the p-adic valuation of the number of spanning trees of the finite intermediate graphs in terms of the p-adic Mahler measure of the Ihara polynomial. When applied to a particular $\mathbb {Z}$-cover, our result gives us back Lengyel’s calculation of the p-adic valuations of Fibonacci numbers.
We revisit Haiman’s conjecture on the relations between characters of Kazdhan–Lusztig basis elements of the Hecke algebra over $S_n$. The conjecture asserts that, for purposes of character evaluation, any Kazhdan–Lusztig basis element is reducible to a sum of the simplest possible ones (those associated to so-called codominant permutations). When the basis element is associated to a smooth permutation, we are able to give a geometric proof of this conjecture. On the other hand, if the permutation is singular, we provide a counterexample.
Weighing matrices with entries in the complex cubic and sextic roots of unity are employed to construct Hermitian self-dual codes and Hermitian linear complementary dual codes over the finite field $\mathrm {GF}(4).$ The parameters of these codes are explored for small matrix orders and weights.
We study covering numbers of subsets of the symmetric group $S_n$ that exhibit closure under conjugation, known as normal sets. We show that for any $\epsilon>0$, there exists $n_0$ such that if $n>n_0$ and A is a normal subset of the symmetric group $S_n$ of density $\ge e^{-n^{2/5 - \epsilon }}$, then $A^2 \supseteq A_n$. This improves upon a seminal result of Larsen and Shalev (Inventiones Math., 2008), with our $2/5$ in the double exponent replacing their $1/4$.
Our proof strategy combines two types of techniques. The first is ‘traditional’ techniques rooted in character bounds and asymptotics for the Witten zeta function, drawing from the foundational works of Liebeck–Shalev, Larsen–Shalev, and more recently, Larsen–Tiep. The second is a sharp hypercontractivity theorem in the symmetric group, which was recently obtained by Keevash and Lifshitz. This synthesis of algebraic and analytic methodologies not only allows us to attain our improved bounds but also provides new insights into the behavior of general independent sets in normal Cayley graphs over symmetric groups.
The walk matrix associated to an $n\times n$ integer matrix $\mathbf{X}$ and an integer vector $b$ is defined by ${\mathbf{W}} \,:\!=\, (b,{\mathbf{X}} b,\ldots, {\mathbf{X}}^{n-1}b)$. We study limiting laws for the cokernel of $\mathbf{W}$ in the scenario where $\mathbf{X}$ is a random matrix with independent entries and $b$ is deterministic. Our first main result provides a formula for the distribution of the $p^m$-torsion part of the cokernel, as a group, when $\mathbf{X}$ has independent entries from a specific distribution. The second main result relaxes the distributional assumption and concerns the ${\mathbb{Z}}[x]$-module structure.
The motivation for this work arises from an open problem in spectral graph theory, which asks to show that random graphs are often determined up to isomorphism by their (generalised) spectrum. Sufficient conditions for generalised spectral determinacy can, namely, be stated in terms of the cokernel of a walk matrix. Extensions of our results could potentially be used to determine how often those conditions are satisfied. Some remaining challenges for such extensions are outlined in the paper.
Let $\Omega _n$ be the ring of polynomial-valued holomorphic differential forms on complex n-space, referred to in physics as the superspace ring of rank n. The symmetric group ${\mathfrak {S}}_n$ acts diagonally on $\Omega _n$ by permuting commuting and anticommuting generators simultaneously. We let $SI_n \subseteq \Omega _n$ be the ideal generated by ${\mathfrak {S}}_n$-invariants with vanishing constant term and study the quotient $SR_n = \Omega _n / SI_n$ of superspace by this ideal. We calculate the doubly-graded Hilbert series of $SR_n$ and prove an ‘operator theorem’, which characterizes the harmonic space $SH_n \subseteq \Omega _n$ attached to $SR_n$ in terms of the Vandermonde determinant and certain differential operators. Our methods employ commutative algebra results that were used in the study of Hessenberg varieties. Our results prove conjectures of N. Bergeron, Colmenarejo, Li, Machacek, Sulzgruber, Swanson, Wallach and Zabrocki.