We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let M be a smooth closed oriented surface. Gaussian thermostats on M correspond to the geodesic flows arising from metric connections, including those with non-zero torsion. These flows may not preserve any absolutely continuous measure. We prove that if two Gaussian thermostats on M with negative thermostat curvature are related by a smooth orbit equivalence isotopic to the identity, then the two background metrics are conformally equivalent via a smooth diffeomorphism of M isotopic to the identity. We also give a relationship between the thermostat forms themselves. Finally, we prove the same result for Anosov magnetic flows.
Quorum sensing governs bacterial communication, playing a crucial role in regulating population behaviour. We propose a mathematical model that uncovers chaotic dynamics within quorum sensing networks, highlighting challenges to predictability. The model explores interactions between autoinducers and two bacterial subtypes, revealing oscillatory dynamics in both a constant autoinducer submodel and the full three-component model. In the latter case, we find that the complicated dynamics can be explained by the presence of homoclinic Shilnikov bifurcations. We employ a combination of normal-form analysis and numerical continuation methods to analyse the system.
We study the planar FitzHugh–Nagumo system with an attracting periodic orbit that surrounds a repelling focus equilibrium. When the associated oscillation of the system is perturbed, in a given direction and with a given amplitude, there will generally be a change in phase of the perturbed oscillation with respect to the unperturbed one. This is recorded by the phase transition curve (PTC), which relates the old phase (along the periodic orbit) to the new phase (after perturbation). We take a geometric point of view and consider the phase-resetting surface comprising all PTCs as a function of the perturbation amplitude. This surface has a singularity when the perturbation maps a point on the periodic orbit exactly onto the repelling focus, which is the only point that does not return to stable oscillation. We also consider the PTC as a function of the direction of the perturbation and present how the corresponding phase-resetting surface changes with increasing perturbation amplitude. In this way, we provide a complete geometric interpretation of how the PTC changes for any perturbation direction. Unlike other examples discussed in the literature so far, the FitzHugh–Nagumo system is a generic example and, hence, representative for planar vector fields.
Using a perturbation result established by Galatolo and Lucena [Spectral gap and quantitative statistical stability for systems with contracting fibers and Lorenz-like maps. Discrete Contin. Dyn. Syst.40(3) (2020), 1309–1360], we obtain quantitative estimates on the continuity of the invariant densities and entropies of the physical measures for some families of piecewise expanding maps. We apply these results to a family of two-dimensional tent maps.
We study the problem of conjugating a diffeomorphism of the interval to (positive) powers of itself. Although this is always possible for homeomorphisms, the smooth setting is rather interesting. Besides the obvious obstruction given by hyperbolic fixed points, several other aspects need to be considered. As concrete results we show that, in class C1, if we restrict to the (closed) subset of diffeomorphisms having only parabolic fixed points, the set of diffeomorphisms that are conjugate to their powers is dense, but its complement is generic. In higher regularity, however, the complementary set contains an open and dense set. The text is complemented with several remarks and results concerning distortion elements of the group of diffeomorphisms of the interval in several regularities.
This paper deals with the exponential separation of type II, an important concept for random systems of differential equations with delay, introduced in Mierczyński et al. [18]. Two different approaches to its existence are presented. The state space X will be a separable ordered Banach space with $\dim X\geq 2$, dual space $X^{*}$, and positive cone $X^+$ normal and reproducing. In both cases, appropriate cooperativity and irreducibility conditions are assumed to provide a family of generalized Floquet subspaces. If in addition $X^*$ is also separable, one obtains an exponential separation of type II. When this is not the case, but there is an Oseledets decomposition for the continuous semiflow, the same result holds. Detailed examples are given for all the situations, including also a case where the cone is not normal.
In this paper, we study the twisted Ruelle zeta function associated with the geodesic flow of a compact, hyperbolic, odd-dimensional manifold X. The twisted Ruelle zeta function is associated with an acyclic representation $\chi \colon \pi _{1}(X) \rightarrow \operatorname {\mathrm {GL}}_{n}(\mathbb {C})$, which is close enough to an acyclic, unitary representation. In this case, the twisted Ruelle zeta function is regular at zero and equals the square of the refined analytic torsion, as it is introduced by Braverman and Kappeler in [6], multiplied by an exponential, which involves the eta invariant of the even part of the odd-signature operator, associated with $\chi $.
For a class of potentials $\psi $ satisfying a condition depending on the roof function of a suspension (semi)flow, we show an EKP inequality, which can be interpreted as a Hölder continuity property in the weak${^*}$ norm of measures, with respect to the pressure of those measures, where the Hölder exponent depends on the $L^q$-space to which $\psi $ belongs. This also captures a new type of phase transition for intermittent (semi)flows (and maps).
We prove a result on equilibrium measures for potentials with summable variation on arbitrary subshifts over a countable amenable group. For finite configurations v and w, if v is always replaceable by w, we obtain a bound on the measure of v depending on the measure of w and a cocycle induced by the potential. We then use this result to show that under this replaceability condition, we can obtain bounds on the Lebesgue–Radon–Nikodym derivative $d (\mu _\phi \circ \xi ) / d\mu _\phi $ for certain holonomies $\xi $ that generate the homoclinic (Gibbs) relation. As corollaries, we obtain extensions of results by Meyerovitch [Gibbs and equilibrium measures for some families of subshifts. Ergod. Th. & Dynam. Sys. 33(3) (2013), 934–953], and García-Ramos and Pavlov [Extender sets and measures of maximal entropy for subshifts. J. Lond. Math. Soc. (2)100(3) (2019), 1013–1033] to the countable amenable group subshift setting. Our methods rely on the exact tiling result for countable amenable groups by Downarowicz, Huczek, and Zhang [Tilings of amenable groups. J. Reine Angew. Math. 2019(747) (2019), 277–298] and an adapted proof technique from García-Ramos and Pavlov.
We combine methods from microlocal analysis and dimension theory to study resonances with largest real part for an Anosov flow with smooth real valued potential. We show that the resonant states are closely related to special systems of measures supported on the stable manifolds introduced by Climenhaga [SRB and equilibrium measures via dimension theory. A Vision for Dynamics in the 21st Century: The Legacy of Anatole Katok. Cambridge University Press, Cambridge, 2024, pp. 94–138]. As a result, we relate the presence of the resonances on the critical axis to mixing properties of the flow with respect to certain equilibrium measures and show that these equilibrium measures can be reconstructed from the spectral theory of the Anosov flow.
Quasigeodesic behavior of flow lines is a very useful property in the study of Anosov flows. Not every Anosov flow in dimension three is quasigeodesic. In fact, until recently, up to orbit equivalence, the only previously known examples of quasigeodesic Anosov flows were suspension flows. In a recent article, the second author proved that an Anosov flow on a hyperbolic 3-manifold is quasigeodesic if and only if it is non-$\mathbb {R}$-covered, and this result completes the classification of quasigeodesic Anosov flows on hyperbolic 3-manifolds. In this article, we prove that a new class of examples of Anosov flows are quasigeodesic. These are the first examples of quasigeodesic Anosov flows on 3-manifolds that are neither Seifert, nor solvable, nor hyperbolic. In general, it is very hard to show that a given flow is quasigeodesic and, in this article, we provide a new method to prove that an Anosov flow is quasigeodesic.
It is known that hyperbolic linear delay difference equations are shadowable on the half-line. In this article, we prove the converse and hence the equivalence between hyperbolicity and the positive shadowing property for the following two classes of linear delay difference equations: (a) for non-autonomous equations with finite delays and uniformly bounded compact coefficient operators in Banach spaces and (b) for Volterra difference equations with infinite delay in finite dimensional spaces.
We study locally constant skew-product maps over full shifts of finite symbols with arbitrary compact metric spaces as fiber spaces. We introduce a new criterion to determine the density of leaves of the strong unstable (and strong stable) foliation, that is, for its minimality. When the fiber space is a circle, we show that both strong foliations are minimal for an open and dense set of robustly transitive skew-products. We provide examples where either one foliation is minimal or neither is minimal. Our approach involves investigating the dynamics of the associated iterated function system (IFS). We establish the asymptotic stability of the phase space of the IFS when it is a strict attractor of the system. We also show that any transitive IFS consisting of circle diffeomorphisms that preserve orientation can be approximated by a robust forward and backward minimal, expanding, and ergodic (with respect to Lebesgue) IFS. Lastly, we provide examples of smooth robustly transitive IFSs where either the forward or the backward minimal fails, or both.
In Oliveira, Schlomiuk, Travaglini, and Valls, Geometry, integrability and bifurcation diagrams of a family of quadratic differential systems as application of Darboux theory of integrability, Electron. J. Qual. Theory Differ. Equ.45(2021), 1–90, the authors investigate about the integrability of the family QSH (the whole class of non-degenerate planar quadratic systems possessing at least one invariant hyperbola). However, some very difficult cases are left open in Oliveira, Schlomiuk, Travaglini, and Valls, Geometry, integrability and bifurcation diagrams of a family of quadratic differential systems as application of Darboux theory of integrability, Electron. J. Qual. Theory Differ. Equ.45(2021), 1–90, and the main aim of this article is to study the Liouvillian integrability some of the systems that were left behind in Oliveira, Schlomiuk, Travaglini, and Valls, Geometry, integrability and bifurcation diagrams of a family of quadratic differential systems as application of Darboux theory of integrability, Electron. J. Qual. Theory Differ. Equ.45(2021), 1–90.
Let $f,g$ be $C^2$ expanding maps on the circle which are topologically conjugate. We assume that the derivatives of f and g at corresponding periodic points coincide for some large period N. We show that f and g are ‘approximately smoothly conjugate.’ Namely, we construct a $C^2$ conjugacy $h_N$ such that $h_N$ is exponentially close to h in the $C^0$ topology, and $f_N:=h_N^{-1}gh_N$ is exponentially close to f in the $C^1$ topology. Our main tool is a uniform effective version of Bowen’s equidistribution of weighted periodic orbits to the equilibrium state.
We prove that every homeomorphism of a compact manifold with dimension one has zero topological emergence, whereas in dimension greater than one the topological emergence of a $C^0-$generic homeomorphism is maximal, equal to the dimension of the manifold. We also show that the metric emergence of a continuous self-map on compact metric space has the intermediate value property.
We study piecewise injective, but not necessarily globally injective, contracting maps on a compact subset of ${\mathbb R}^d$. We prove that, generically, the attractor and the set of discontinuities of such a map are disjoint, and hence the attractor consists of periodic orbits. In addition, we prove that piecewise injective contractions are generically topologically stable.
For $\unicode{x3bb}>1$, we consider the locally free ${\mathbb Z}\ltimes _\unicode{x3bb} \mathbb R$ actions on $\mathbb T^2$. We show that if the action is $C^r$ with $r\geq 2$, then it is $C^{r-\epsilon }$-conjugate to an affine action generated by a hyperbolic automorphism and a linear translation flow along the expanding eigen-direction of the automorphism. In contrast, there exists a $C^{1+\alpha }$-action which is semi-conjugate, but not topologically conjugate to an affine action.
In this paper, we study a connection between disintegration of measures and geometric properties of probability spaces. We prove a disintegration theorem, addressing disintegration from the perspective of an optimal transport problem. We look at the disintegration of transport plans, which are used to define and study disintegration maps. Using these objects, we study the regularity and absolute continuity of disintegration of measures. In particular, we exhibit conditions for which the disintegration map is weakly continuous and one can obtain a path of measures given by this map. We show a rigidity condition for the disintegration of measures to be given into absolutely continuous measures.
Due to a result by Glasner and Downarowicz [Isomorphic extensions and applications. Topol. Methods Nonlinear Anal.48(1) (2016), 321–338], it is known that a minimal system is mean equicontinuous if and only if it is an isomorphic extension of its maximal equicontinuous factor. The majority of known examples of this type are almost automorphic, that is, the factor map to the maximal equicontinuous factor is almost one-to-one. The only cases of isomorphic extensions which are not almost automorphic are again due to Glasner and Downarowicz, who in the same article provide a construction of such systems in a rather general topological setting. Here, we use the Anosov–Katok method to provide an alternative route to such examples and to show that these may be realized as smooth skew product diffeomorphisms of the two-torus with an irrational rotation on the base. Moreover – and more importantly – a modification of the construction allows to ensure that lifts of these diffeomorphisms to finite covering spaces provide novel examples of finite-to-one topomorphic extensions of irrational rotations. These are still strictly ergodic and share the same dynamical eigenvalues as the original system, but show an additional singular continuous component of the dynamical spectrum.