To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
If $f=u+iv$ is analytic in the unit disk ${\mathbb D}$, it is known that the integral means $M_p(r,u)$ and $M_p(r,v)$ have the same order of growth. This is false if f is a (complex-valued) harmonic function. However, we prove that the same principle holds if we assume, in addition, that f is K-quasiregular in ${\mathbb D}$. The case $0<p<1$ is particularly interesting, and is an extension of the recent Riesz-type theorems for harmonic quasiregular mappings by several authors. Further, we proceed to show that the real and imaginary parts of a harmonic quasiregular mapping have the same degree of smoothness on the boundary.
Motivated by the study of multiplicative linear functionals in reproducing kernel Hilbert space (RKHS) with normalized complete Pick kernel, we define and study the multiplicative linear map between two RKHS. We identify the conditions under which such maps are continuous. Additionally, we prove that any unital cyclicity-preserving linear map is multiplicative. Conversely, we also characterize when a multiplicative linear map is unital cyclicity preserving. These results serve as a generalization of the Gleason–Kahane–Żelazko theorem to the setting of multiplicative maps between two RKHS. We present the composition operator as a natural class of examples of multiplicative linear maps on an RKHS. We also prove that every continuous multiplicative linear operator can be realized as a composition operator on various analytic Hilbert spaces over the unit disc $\mathbb {D}.$
We obtain Wiman–Valiron type inequalities for random entire functions and for random analytic functions on the unit disk that improve a classical result of Erdős and Rényi and recent results of Kuryliak and Skaskiv. Our results are then applied to linear dynamics: we obtain rates of growth, outside some exceptional set, for analytic functions that are frequently hypercyclic for an arbitrary chaotic weighted backward shift.
Over the last century, a large variety of infinite congruence families have been discovered and studied, exhibiting a great variety with respect to their difficulty. Major complicating factors arise from the topology of the associated modular curve: classical techniques are sufficient when the associated curve has cusp count 2 and genus 0. Recent work has led to new techniques that have proven useful when the associated curve has cusp count greater than 2 and genus 0. We show here that these techniques may be adapted in the case of positive genus. In particular, we examine a congruence family over the 2-elongated plane partition diamond counting function $d_2(n)$ by powers of 7, for which the associated modular curve has cusp count 4 and genus 1. We compare our method with other techniques for proving genus 1 congruence families, and conjecture a second congruence family by powers of 7, which may be amenable to similar techniques.
We study the freeness problem for multiplicative subgroups of $\operatorname{SL}_2(\mathbb{Q})$. For $q = r/p$ in $\mathbb{Q} \cap (0,4)$, where p is prime and $\gcd(r,p)=1$, we initiate the study of the algebraic structure of the group $\Delta_q$ generated by
We introduce the conjecture that $\Delta_{r/p} = \overline{\Gamma}_1^{(p)}(r)$, the congruence subgroup of $\operatorname{SL}_2(\mathbb{Z}[{1}/{p}])$ consisting of all matrices with upper right entry congruent to 0 mod r and diagonal entries congruent to 1 mod r. We prove this conjecture when $r \leq 4$ and for some cases when $r = 5$. Furthermore, conditional on a strong form of Artin’s conjecture on primitive roots, we also prove the conjecture when $r \in \{ p-1, p+1, (p+1)/2 \}$. In all these cases, this gives information about the algebraic structure of $\Delta_{r/p}$: it is isomorphic to the fundamental group of a finite graph of virtually free groups, and has finite index $J_2(r)$ in $\operatorname{SL}_2(\mathbb{Z}[{1}/{p}])$, where $J_2(r)$ denotes the Jordan totient function.
We define the chain Sobolev space on a possibly non-complete metric measure space in terms of chain upper gradients. In this context, ɛ-chains are finite collections of points with distance at most ɛ between consecutive points. They play the role of discrete curves. Chain upper gradients are defined accordingly and the chain Sobolev space is defined by letting the size parameter ɛ going to zero. In the complete setting, we prove that the chain Sobolev space is equal to the classical notions of Sobolev spaces in terms of relaxation of upper gradients or of the local Lipschitz constant of Lipschitz functions. The proof of this fact is inspired by a recent technique developed by Eriksson-Bique in Eriksson-Bique (2023 Calc. Var. Partial Differential Equations62 23). In the possible non-complete setting, we prove that the chain Sobolev space is equal to the one defined via relaxation of the local Lipschitz constant of Lipschitz functions, while in general they are different from the one defined via upper gradients along curves. We apply the theory developed in the paper to prove equivalent formulations of the Poincaré inequality in terms of pointwise estimates involving ɛ-upper gradients, lower bounds on modulus of chains connecting points and size of separating sets measured with the Minkowski content in the non-complete setting. Along the way, we discuss the notion of weak ɛ-upper gradients and asymmetric notions of integral along chains.
We will give a precise and explicit asymptotic estimate for the characteristic of the Riemann zeta function $\zeta $ with an error term of order $O(\frac {\log r}{r})$ and a corresponding asymptotic estimate for the number of fixed points of $\zeta $.
Let $(\phi _t)$ be a continuous semigroup of holomorphic functions in the unit disk. We prove that all its orbits are rectifiable and that its forward orbits are Lipschitz curves. Moreover, we find a necessary and sufficient condition in terms of hyperbolic geometry so that a backward orbit is a Lipschitz curve. We further explore the Lipschitz condition for forward orbits lying on the unit circle and then for semigroups of holomorphic functions in general simply connected domains.
The description of the existence conditions and the forms of the solutions for the above partial differential equations demonstrate that our results improve and generalise the previous results given by Saleeby, Cao and Xu. Moreover, some of our examples corresponding to every case in our theorems reveal the significant difference in the order of solutions for equations from a single variable to several variables.
We define the Schur–Agler class in infinite variables to consist of functions whose restrictions to finite-dimensional polydisks belong to the Schur–Agler class. We show that a natural generalization of an Agler decomposition holds and the functions possess transfer function realizations that allow us to extend the functions to the unit ball of $\ell ^\infty $. We also give a Pick interpolation type theorem which displays a subtle difference with finitely many variables. Finally, we make a brief connection to Dirichlet series derived from the Schur–Agler class in infinite variables via the Bohr correspondence.
We study random walks on metric spaces with contracting isometries. In this first article of the series, we establish sharp deviation inequalities by adapting Gouëzel’s pivotal time construction. As an application, we establish the exponential bounds for deviation from below, central limit theorem, law of the iterated logarithms, and the geodesic tracking of random walks on mapping class groups and CAT(0) spaces.
A Pell–Abel equation is a functional equation of the form $P^{2}-DQ^{2} = 1$, with a given polynomial $D$ free of squares and unknown polynomials $P$ and $Q$. We show that the space of Pell–Abel equations with the degrees of $D$ and of the primitive solution $P$ fixed is a complex manifold. We describe its connected components by an efficiently computable invariant. Moreover, we give various applications of this result, including to torsion pairs on hyperelliptic curves and to Hurwitz spaces, and a description of the connected components of the space of primitive $k$-differentials with a unique zero on genus $2$ Riemann surfaces.
We show that the set of Julia limiting directions of a transcendental-type K-quasiregular mapping $f:\mathbb {R}^n\to \mathbb {R}^n$ must contain a component of a certain size, depending on the dimension n, the maximal dilatation K, and the order of growth of f. In particular, we show that if the order of growth is small enough, then every direction is a Julia limiting direction. We also show that if every component of the set of Julia limiting directions is a point, then f has infinite order. The main tool in proving these results is a new version of a Phragmén–Lindelöf principle for sub-F-extremals in sectors, where we allow for boundary growth of the form $O( \log |x| )$ instead of the previously considered $O(1)$ bound.
This paper studies quasiconformal non-equivalence of Julia sets and limit sets. We proved that any Julia set is quasiconformally different from the Apollonian gasket. We also proved that any Julia set of a quadratic rational map is quasiconformally different from the gasket limit set of a geometrically finite Kleinian group.
In this paper, we solve an open problem posed by Li [J. Math. Anal. Appl. 310 (2005) 412-423] in connection with the problem of sharing a set by entire functions f and their linear differential polynomials $ L_k[f] $. Furthermore, we study the Fermat-type functional equations of the form $ f^n+g^n=1 $ to find the meromorphic solutions (f, g) which enable us to answer the question of Li completely. This settles the long-standing open problem of Li.
As is well-known, the conformal class of a surface M with boundary is determined by its Diriclet-to-Neumann (DN) map $\Lambda $. We propose an algorithm for determination of the b-period matrix $\mathbb {B}$ of the (Schottky) double of M via $\Lambda $.
Macroscopically, a Darcian unsaturated moisture flow in the top soil is usually represented by an one-dimensional volume scale of evaporation from a static water table. On the microscale, simple pore-level models posit bundles of small-radius capillary tubes of a constant circular cross-section, fully occupied by mobile water moving in the Hagen–Poiseuille (HP) regime, while large-diameter pores are occupied by stagnant air. In our paper, cross-sections of cylindrical pores are polygonal. Steady, laminar, fully developed two-dimensional flows of Newtonian water in prismatic conduits, driven by a constant pressure gradient along a pore gradient, are more complex than the HP formula; this is based on the fact that the pores are only partially occupied by water and immobile air. The Poisson equation in a circular tetragon, with no-slip or mixed (no-shear-stress) boundary conditions on the two adjacent pore walls and two menisci, is solved by the methods of complex analysis. The velocity distribution is obtained via the Keldysh–Sedov type of singular integrals, and the flow rate is evaluated for several sets of meniscus radii by integrating the velocity over the corresponding tetragons.
Let $\mu $ be a finite positive Borel measure on $[0,1)$ and $f(z)=\sum _{n=0}^{\infty }a_{n}z^{n} \in H(\mathbb {D})$. For $0<\alpha <\infty $, the generalized Cesàro-like operator $\mathcal {C}_{\mu ,\alpha }$ is defined by
where, for $n\geq 0$, $\mu _n$ denotes the nth moment of the measure $\mu $, that is, $\mu _n=\int _{0}^{1} t^{n}d\mu (t)$.
For $s>1$, let X be a Banach subspace of $H(\mathbb {D})$ with $\Lambda ^{s}_{\frac {1}{s}}\subset X\subset \mathcal {B}$. In this article, for $1\leq p <\infty $, we characterize the measure $\mu $ for which $\mathcal {C}_{\mu ,\alpha }$ is bounded (resp. compact) from X into the analytic Besov space $B_{p}$.
In this article, we describe meromorphic solutions of certain partial differential equations, which are originated from the algebraic equation $P(f,g)=0$, where P is a polynomial on $\mathbb {C}^2$. As an application, with the theorem of Coman–Poletsky, we give a proof of the classic theorem: Every meromorphic solution $u(s)$ on $\mathbb {C}$ of $P(u,u')=0$ belongs to W, which is the class of meromorphic functions on $\mathbb {C}$ that consists of elliptic functions, rational functions and functions of the form $R(e^{a s})$, where R is rational and $a\in \mathbb {C}$. In addition, we consider the factorization of meromorphic solutions on $\mathbb {C}^n$ of some well-known PDEs, such as Inviscid Burgers’ equation, Riccati equation, Malmquist–Yosida equation, PDEs of Fermat type.