We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Given a symmetric monoidal category ${\mathcal C}$ with product $\sqcup $, where the neutral element for the product is an initial object, we consider the poset of $\sqcup $-complemented subobjects of a given object X. When this poset has finite height, we define decompositions and partial decompositions of X which are coherent with $\sqcup $, and order them by refinement. From these posets, we define complexes of frames and partial bases, augmented Bergman complexes and related ordered versions. We propose a unified approach to the study of their combinatorics and homotopy type, establishing various properties and relations between them. Via explicit homotopy formulas, we will be able to transfer structural properties, such as Cohen-Macaulayness.
In well-studied scenarios, the poset of $\sqcup $-complemented subobjects specializes to the poset of free factors of a free group, the subspace poset of a vector space, the poset of nondegenerate subspaces of a vector space with a nondegenerate form, and the lattice of flats of a matroid. The decomposition and partial decomposition posets, the complex of frames and partial bases together with the ordered versions, either coincide with well-known structures, generalize them, or yield new interesting objects. In these particular cases, we provide new results along with open questions and conjectures.
In this article, we study the Johnson homomorphisms of basis-conjugating automorphism groups of free groups. We construct obstructions for the surjectivity of the Johnson homomorphisms. By using it, we determine their cokernels of degree up to four and give further observations for degree greater than four. As applications, we give the affirmative answer to the Andreadakis problem for the basis-conjugating automorphism groups of free groups at degree four. Moreover, we calculate twisted first cohomology groups of the braid-permutation automorphism groups of free groups.
Let W be a simply laced Weyl group of finite type and rank n. If W has type $E_7$, $E_8$ or $D_n$ for n even, then the root system of W has subsystems of type $nA_1$. This gives rise to an irreducible Macdonald representation of W spanned by n-roots, which are products of n orthogonal roots in the symmetric algebra of the reflection representation. We prove that in these cases, the set of all maximal sets of orthogonal positive roots has the structure of a quasiparabolic set in the sense of Rains–Vazirani. The quasiparabolic structure can be described in terms of certain quadruples of orthogonal positive roots which we call crossings, nestings and alignments. This leads to nonnesting and noncrossing bases for the Macdonald representation, as well as some highly structured partially ordered sets. We use the $8$-roots in type $E_8$ to give a concise description of a graph that is known to be non-isomorphic but quantum isomorphic to the orthogonality graph of the $E_8$ root system.
A subgroup X of a group G is said to be transitively normal if X is normal in any subgroup Y of G such that $X\leq Y$ and X is subnormal in Y. We investigate the structure of generalised soluble groups with dense transitively normal subgroups, that is, groups in which every nonempty open interval in their subgroup lattice contains a transitively normal subgroup. In particular, it will be proved that nonperiodic generalised soluble groups with dense transitively normal subgroups are abelian.
Let g be an element of a group G. For a positive integer n, let $R_n(g)$ be the subgroup generated by all commutators $[\ldots [[g,x],x],\ldots ,x]$ over $x\in G$, where x is repeated n times. Similarly, $L_n(g)$ is defined as the subgroup generated by all commutators $[\ldots [[x,g],g],\ldots ,g]$, where $x\in G$ and g is repeated n times. In the literature, there are several results showing that certain properties of groups with small subgroups $R_n(g)$ or $L_n(g)$ are close to those of Engel groups. The present article deals with orderable groups in which, for some $n\geq 1$, the subgroups $R_n(g)$ are polycyclic. Let $h\geq 0$, $n>0$ be integers and G be an orderable group in which $R_n(g)$ is polycyclic with Hirsch length at most h for every $g\in G$. It is proved that there are $(h,n)$-bounded numbers $h^*$ and $c^*$ such that G has a finitely generated normal nilpotent subgroup N with $h(N)\leq h^*$ and $G/N$ nilpotent of class at most $c^*$. The analogue of this theorem for $L_n(g)$ was established in 2018 by Shumyatsky [‘Orderable groups with Engel-like conditions’, J. Algebra499 (2018), 313–320].
It is a theorem due to F. Haglund and D. Wise that reflection groups (aka Coxeter groups) virtually embed into right-angled reflection groups (aka right-angled Coxeter groups). In this article, we generalize this observation to rotation groups, which can be thought of as a common generalization of Coxeter groups and graph products of groups. More precisely, we prove that rotation groups (aka periagroups) virtually embed into right-angled rotation groups (aka graph products of groups).
We study a family of Thompson-like groups built as rearrangement groups of fractals introduced by Belk and Forrest in 2019, each acting on a Ważewski dendrite. Each of these is a finitely generated group that is dense in the full group of homeomorphisms of the dendrite (studied by Monod and Duchesne in 2019) and has infinite-index finitely generated simple commutator subgroup, with a single possible exception. More properties are discussed, including finite subgroups, the conjugacy problem, invariable generation and existence of free subgroups. We discuss many possible generalisations, among which we find the Airplane rearrangement group $T_A$. Despite close connections with Thompson’s group F, dendrite rearrangement groups seem to share many features with Thompson’s group V.
In the present work, we investigate the Lie algebra of the Formanek-Procesi group $\textrm {FP}(A_{\Gamma })$ with base group $A_{\Gamma }$ a right-angled Artin group. We show that the Lie algebra $\textrm {gr}(\textrm {FP}(A_{\Gamma }))$ has a presentation that is dictated by the group presentation. Moreover, we show that if the base group $G$ is a finitely generated residually finite $p$-group, then $\textrm { FP}(G)$ is residually nilpotent. We also show that $\textrm {FP}(A_{\Gamma })$ is a residually torsion-free nilpotent group.
It is shown that if $\{H_n\}_{n \in \omega}$ is a sequence of groups without involutions, with $1 \lt |H_n| \leq 2^{\aleph_0}$, then the topologist’s product modulo the finite words is (up to isomorphism) independent of the choice of sequence. This contrasts with the abelian setting: if $\{A_n\}_{n \in \omega}$ is a sequence of countably infinite torsion-free abelian groups, then the isomorphism class of the product modulo sum $\prod_{n \in \omega} A_n/\bigoplus_{n \in \omega} A_n$ is dependent on the sequence.
Let (W, S) be a Coxeter system of rank n, and let $p_{(W, S)}(t)$ be its growth function. It is known that $p_{(W, S)}(q^{-1}) \lt \infty$ holds for all $n \leq q \in \mathbb{N}$. In this paper, we will show that this still holds for $q = n-1$, if (W, S) is 2-spherical. Moreover, we will prove that $p_{(W, S)}(q^{-1}) = \infty$ holds for $q = n-2$, if the Coxeter diagram of (W, S) is the complete graph. These two results provide a complete characterization of the finiteness of the growth function in the case of 2-spherical Coxeter systems with a complete Coxeter diagram.
We study quotients of mapping class groups of punctured spheres by suitable large powers of Dehn twists, showing an analogue of Ivanov’s theorem for the automorphisms of the corresponding quotients of curve graphs. Then we use this result to prove quasi-isometric rigidity of these quotients, answering a question of Behrstock, Hagen, Martin, and Sisto in the case of punctured spheres. Finally, we show that the automorphism groups of our quotients of mapping class groups are “small”, as are their abstract commensurators. This is again an analogue of a theorem of Ivanov about the automorphism group of the mapping class group.
In the process, we develop techniques to extract combinatorial data from a quasi-isometry of a hierarchically hyperbolic space, and use them to give a different proof of a result of Bowditch about quasi-isometric rigidity of pants graphs of punctured spheres.
We show that the group $ \langle a,b,c,t \,:\, a^t=b,b^t=c,c^t=ca^{-1} \rangle$ is profinitely rigid amongst free-by-cyclic groups, providing the first example of a hyperbolic free-by-cyclic group with this property.
Using a recent result of Bowden, Hensel and Webb, we prove the existence of a homeomorphism with positive stable commutator length in the group of homeomorphisms of the Klein bottle which are isotopic to the identity.
We prove several results showing that every locally finite Borel graph whose large-scale geometry is ‘tree-like’ induces a treeable equivalence relation. In particular, our hypotheses hold if each component of the original graph either has bounded tree-width or is quasi-isometric to a tree, answering a question of Tucker-Drob. In the latter case, we moreover show that there exists a Borel quasi-isometry to a Borel forest, under the additional assumption of (componentwise) bounded degree. We also extend these results on quasi-treeings to Borel proper metric spaces. In fact, our most general result shows treeability of countable Borel equivalence relations equipped with an abstract wallspace structure on each class obeying some local finiteness conditions, which we call a proper walling. The proof is based on the Stone duality between proper wallings and median graphs (i.e., CAT(0) cube complexes). Finally, we strengthen the conclusion of treeability in these results to hyperfiniteness in the case where the original graph has one (selected) end per component, generalizing the same result for trees due to Dougherty–Jackson–Kechris.
Let W be a group endowed with a finite set S of generators. A representation $(V,\rho )$ of W is called a reflection representation of $(W,S)$ if $\rho (s)$ is a (generalized) reflection on V for each generator $s \in S$. In this article, we prove that for any irreducible reflection representation V, all the exterior powers $\bigwedge ^d V$, $d = 0, 1, \dots , \dim V$, are irreducible W-modules, and they are non-isomorphic to each other. This extends a theorem of R. Steinberg which is stated for Euclidean reflection groups. Moreover, we prove that the exterior powers (except for the 0th and the highest power) of two non-isomorphic reflection representations always give non-isomorphic W-modules. This allows us to construct numerous pairwise non-isomorphic irreducible representations for such groups, especially for Coxeter groups.
In a paper from 1980, Shelah constructed an uncountable group all of whose proper subgroups are countable. Assuming the continuum hypothesis, he constructed an uncountable group G that moreover admits an integer n satisfying that for every uncountable $X\subseteq G$, every element of G may be written as a group word of length n in the elements of X. The former is called a Jónsson group, and the latter is called a Shelah group.
In this paper, we construct a Shelah group on the grounds of $\textsf {{ZFC}}$ alone – that is, without assuming the continuum hypothesis. More generally, we identify a combinatorial condition (coming from the theories of negative square-bracket partition relations and strongly unbounded subadditive maps) sufficient for the construction of a Shelah group of size $\kappa $, and we prove that the condition holds true for all successors of regular cardinals (such as $\kappa =\aleph _1,\aleph _2,\aleph _3,\ldots $). This also yields the first consistent example of a Shelah group of size a limit cardinal.
Given a presentation of a monoid $M$, combined work of Pride and of Guba and Sapir provides an exact sequence connecting the relation bimodule of the presentation (in the sense of Ivanov) with the first homology of the Squier complex of the presentation, which is naturally a $\mathbb ZM$-bimodule. This exact sequence was used by Kobayashi and Otto to prove the equivalence of Pride’s finite homological type property with the homological finiteness condition bi-$\mathrm {FP}_3$. Guba and Sapir used this exact sequence to describe the abelianization of a diagram group. We prove here a generalization of this exact sequence of bimodules for presentations of associative algebras. Our proof is more elementary than the original proof for the special case of monoids.
The space of monic squarefree complex polynomials has a stratification according to the multiplicities of the critical points. We introduce a method to study these strata by way of the infinite-area translation surface associated to the logarithmic derivative $df/f$ of the polynomial. We determine the monodromy of these strata in the braid group, thus describing which braidings of the roots are possible if the orders of the critical points are required to stay fixed. Mirroring the story for holomorphic differentials on higher-genus surfaces, we find the answer is governed by the framing of the punctured disk induced by the horizontal foliation on the translation surface.
We prove that a homomorphism between free groups of finite rank equipped with the bi-invariant word metrics associated with finite generating sets is a quasi-isometry if and only if it is an isomorphism.