We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
If all of the entries of a large $S_n$ character table are covered up and you are allowed to uncover one entry at a time, then how can you quickly identify all of the indexing characters and conjugacy classes? We present a fast algorithmic solution that works even when n is so large that almost none of the entries of the character table can be computed. The fraction of the character table that needs to be uncovered is $O( n^2 \exp({-}2\pi\sqrt{n/6}))$, and for many of these entries we are only interested in whether the entry is zero.
Continuing our work on group-theoretic generalisations of the prime Ax–Katz Theorem, we give a lower bound on the p-adic divisibility of the cardinality of the set of simultaneous zeros $Z(f_1,f_2,\dots,f_r)$ of r maps $f_j\,{:}\,A\rightarrow B_j$ between arbitrary finite commutative groups A and $B_j$ in terms of the invariant factors of $A, B_1,B_2, \cdots,B_r$ and the functional degrees of the maps $f_1,f_2, \dots,f_r$.
This article presents new rationality results for the ratios of critical values of Rankin–Selberg L-functions of $\mathrm {GL}(n) \times \mathrm {GL}(n')$ over a totally imaginary field $F.$ The proof is based on a cohomological interpretation of Langlands’s contant term theorem via rank-one Eisenstein cohomology for the group $\mathrm {GL}(N)/F,$ where $N = n+n'.$ The internal structure of the totally imaginary base field has a delicate effect on the Galois equivariance properties of the critical values.
We study simple Lie algebras generated by extremal elements, over arbitrary fields of arbitrary characteristic. We show the following: (1) If the extremal geometry contains lines, then the Lie algebra admits a $5 \times 5$-grading that can be parametrized by a cubic norm structure; (2) If there exists a field extension of degree at most $2$ such that the extremal geometry over that field extension contains lines, and in addition, there exist symplectic pairs of extremal elements, then the Lie algebra admits a $5 \times 5$-grading that can be parametrized by a quadrangular algebra.
One of our key tools is a new definition of exponential maps that makes sense even over fields of characteristic $2$ and $3$, which ought to be interesting in its own right.
Not only was Jacques Tits a constant source of inspirationthrough his work, he also had a direct personal influence,notably through his threat to speak evil of our work if it did notinclude the characteristic 2 case.
In their celebrated paper [CLR10], Caputo, Liggett and Richthammer proved Aldous’ conjecture and showed that for an arbitrary finite graph, the spectral gap of the interchange process is equal to the spectral gap of the underlying random walk. A crucial ingredient in the proof was the Octopus Inequality — a certain inequality of operators in the group ring $\mathbb{R}\left[{\mathrm{Sym}}_{n}\right]$ of the symmetric group. Here we generalise the Octopus Inequality and apply it to generalising the Caputo–Liggett–Richthammer Theorem to certain hypergraphs, proving some cases of a conjecture of Caputo.
We study a family of Thompson-like groups built as rearrangement groups of fractals introduced by Belk and Forrest in 2019, each acting on a Ważewski dendrite. Each of these is a finitely generated group that is dense in the full group of homeomorphisms of the dendrite (studied by Monod and Duchesne in 2019) and has infinite-index finitely generated simple commutator subgroup, with a single possible exception. More properties are discussed, including finite subgroups, the conjugacy problem, invariable generation and existence of free subgroups. We discuss many possible generalisations, among which we find the Airplane rearrangement group $T_A$. Despite close connections with Thompson’s group F, dendrite rearrangement groups seem to share many features with Thompson’s group V.
This article is the second in a series investigating cartesian closed varieties. In first of these, we showed that every non-degenerate finitary cartesian variety is a variety of sets equipped with an action by a Boolean algebra B and a monoid M which interact to form what we call a matched pair ${\left[\smash{{B} \mathbin{\mid}{M} }\right]}$. In this article, we show that such pairs ${\left[\smash{{B} \mathbin{\mid}{M} }\right]}$ are equivalent to Boolean restriction monoids and also to ample source-étale topological categories; these are generalizations of the Boolean inverse monoids and ample étale topological groupoids used to encode self-similar structures such as Cuntz and Cuntz–Krieger $C^\ast$-algebras, Leavitt path algebras, and the $C^\ast$-algebras associated with self-similar group actions. We explain and illustrate these links and begin the programme of understanding how topological and algebraic properties of such groupoids can be understood from the logical perspective of the associated varieties.
In the present work, we investigate the Lie algebra of the Formanek-Procesi group $\textrm {FP}(A_{\Gamma })$ with base group $A_{\Gamma }$ a right-angled Artin group. We show that the Lie algebra $\textrm {gr}(\textrm {FP}(A_{\Gamma }))$ has a presentation that is dictated by the group presentation. Moreover, we show that if the base group $G$ is a finitely generated residually finite $p$-group, then $\textrm { FP}(G)$ is residually nilpotent. We also show that $\textrm {FP}(A_{\Gamma })$ is a residually torsion-free nilpotent group.
Let G be a finite group and p be a prime. We prove that if G has three codegrees, then G is an M-group. We prove for some prime p that if the degree of every nonlinear irreducible Brauer character of G is a prime, then for every normal subgroup N of G, either $G/N$ or N is an $M_p$-group.
An element of a group is called strongly reversible or strongly real if it can be expressed as a product of two involutions. We provide necessary and sufficient conditions for an element of $\mathrm{SL}(n,\mathbb{C})$ to be a product of two involutions. In particular, we classify the strongly reversible conjugacy classes in $\mathrm{SL}(n,\mathbb{C})$.
In this paper, we characterise all maximal elements in the semigroup $S(X,Y)=\{f\in T(X) : f(Y)\subseteq Y\}$ with respect to the natural partial order. Our results correct an error in the work of Sun and Wang [‘Natural partial order in semigroups of transformations with invariant set’, Bull. Aust. Math. Soc.87(1) (2013), 94–107].
We describe several exotic fusion systems related to the sporadic simple groups at odd primes. More generally, we classify saturated fusion systems supported on Sylow 3-subgroups of the Conway group $\textrm{Co}_1$ and the Thompson group $\textrm{F}_3$, and a Sylow 5-subgroup of the Monster M, as well as a particular maximal subgroup of the latter two p-groups. This work is supported by computations in MAGMA.
We describe algebraically, diagrammatically, and in terms of weight vectors, the restriction of tensor powers of the standard representation of quantum $\mathfrak {sl}_2$ to a coideal subalgebra. We realize the category as a module category over the monoidal category of type $\pm 1$ representations in terms of string diagrams and via generators and relations. The idempotents projecting onto the quantized eigenspaces are described as type $B/D$ analogues of Jones–Wenzl projectors. As an application, we introduce and give recursive formulas for analogues of $\Theta$-networks.
We introduce an explicit family of representations of the double affine Hecke algebra $\mathbb {H}$ acting on spaces of quasi-polynomials, defined in terms of truncated Demazure-Lusztig type operators. We show that these quasi-polynomial representations provide concrete realisations of a natural family of cyclic Y-parabolically induced $\mathbb {H}$-representations. We recover Cherednik’s well-known polynomial representation as a special case.
The quasi-polynomial representation gives rise to a family of commuting operators acting on spaces of quasi-polynomials. These generalize the Cherednik operators, which are fundamental in the study of Macdonald polynomials. We provide a detailed study of their joint eigenfunctions, which may be regarded as quasi-polynomial, multi-parametric generalisations of nonsymmetric Macdonald polynomials. We also introduce generalizations of symmetric Macdonald polynomials, which are invariant under a multi-parametric generalization of the standard Weyl group action.
We connect our results to the representation theory of metaplectic covers of reductive groups over non-archimedean local fields. We introduce root system generalizations of the metaplectic polynomials from our previous work by taking a suitable restriction and reparametrization of the quasi-polynomial generalizations of Macdonald polynomials. We show that metaplectic Iwahori-Whittaker functions can be recovered by taking the Whittaker limit of these metaplectic polynomials.
We introduce a new algebra $\mathcal {U}=\dot {\mathrm {\mathbf{U}}}_{0,N}(L\mathfrak {sl}_n)$ called the shifted $0$-affine algebra, which emerges naturally from studying coherent sheaves on n-step partial flag varieties through natural correspondences. This algebra $\mathcal {U}$ has a similar presentation to the shifted quantum affine algebra defined by Finkelberg-Tsymbaliuk. Then, we construct a categorical $\mathcal {U}$-action on a certain 2-category arising from derived categories of coherent sheaves on n-step partial flag varieties. As an application, we construct a categorical action of the affine $0$-Hecke algebra on the bounded derived category of coherent sheaves on the full flag variety.
For a group G, a subgroup $U \leqslant G$ and a group A such that $\mathrm {Inn}(G) \leqslant A \leqslant \mathrm {Aut}(G)$, we say that U is an A-covering group of G if $G = \bigcup _{a\in A}U^a$. A theorem of Jordan (1872), implies that if G is a finite group, $A = \mathrm {Inn}(G)$ and U is an A-covering group of G, then $U = G$. Motivated by a question concerning Kronecker classes of field extensions, Neumann and Praeger (1990) conjectured that, more generally, there is an integer function f such that if G is a finite group and U is an A-covering subgroup of G, then $|G:U| \leqslant f(|A:\mathrm {Inn}(G)|)$. A key piece of evidence for this conjecture is a theorem of Praeger [‘Kronecker classes of fields and covering subgroups of finite groups’, J. Aust. Math. Soc.57 (1994), 17–34], which asserts that there is a two-variable integer function g such that if G is a finite group and U is an A-covering subgroup of G, then $|G:U|\leqslant g(|A:\mathrm {Inn}(G)|,c)$, where c is the number of A-chief factors of G. Unfortunately, the proof of this theorem contains an error. In this paper, using a different argument, we give a correct proof of the theorem.
It is shown that if $\{H_n\}_{n \in \omega}$ is a sequence of groups without involutions, with $1 \lt |H_n| \leq 2^{\aleph_0}$, then the topologist’s product modulo the finite words is (up to isomorphism) independent of the choice of sequence. This contrasts with the abelian setting: if $\{A_n\}_{n \in \omega}$ is a sequence of countably infinite torsion-free abelian groups, then the isomorphism class of the product modulo sum $\prod_{n \in \omega} A_n/\bigoplus_{n \in \omega} A_n$ is dependent on the sequence.
Let (W, S) be a Coxeter system of rank n, and let $p_{(W, S)}(t)$ be its growth function. It is known that $p_{(W, S)}(q^{-1}) \lt \infty$ holds for all $n \leq q \in \mathbb{N}$. In this paper, we will show that this still holds for $q = n-1$, if (W, S) is 2-spherical. Moreover, we will prove that $p_{(W, S)}(q^{-1}) = \infty$ holds for $q = n-2$, if the Coxeter diagram of (W, S) is the complete graph. These two results provide a complete characterization of the finiteness of the growth function in the case of 2-spherical Coxeter systems with a complete Coxeter diagram.
For a finite group G, let $\operatorname { {AD}}(G)$ denote the Fourier norm of the antidiagonal in $G\times G$. The author showed recently in [‘An explicit minorant for the amenability constant of the Fourier algebra’, Int. Math. Res. Not. IMRN2023 (2023), 19390–19430] that $\operatorname { {AD}}(G)$ coincides with the amenability constant of the Fourier algebra of G and is equal to the normalized sum of the cubes of the character degrees of G. Motivated by a gap result for amenability constants from Johnson [‘Non-amenability of the Fourier algebra of a compact group’, J. Lond. Math. Soc. (2)50 (1994), 361–374], we determine exactly which numbers in the interval $[1,2]$ arise as values of $\operatorname { {AD}}(G)$. As a by-product, we show that the set of values of $\operatorname { {AD}}(G)$ does not contain all its limit points. Some other calculations or bounds for $\operatorname { {AD}}(G)$ are given for familiar classes of finite groups. We also indicate a connection between $\operatorname { {AD}}(G)$ and the commuting probability of G, and use this to show that every finite group G satisfying $\operatorname { {AD}}(G)< {61}/{15}$ must be solvable; here, the value ${61}/{15}$ is the best possible.
We study quotients of mapping class groups of punctured spheres by suitable large powers of Dehn twists, showing an analogue of Ivanov’s theorem for the automorphisms of the corresponding quotients of curve graphs. Then we use this result to prove quasi-isometric rigidity of these quotients, answering a question of Behrstock, Hagen, Martin, and Sisto in the case of punctured spheres. Finally, we show that the automorphism groups of our quotients of mapping class groups are “small”, as are their abstract commensurators. This is again an analogue of a theorem of Ivanov about the automorphism group of the mapping class group.
In the process, we develop techniques to extract combinatorial data from a quasi-isometry of a hierarchically hyperbolic space, and use them to give a different proof of a result of Bowditch about quasi-isometric rigidity of pants graphs of punctured spheres.