We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}G$ be a finite group of order $n$, and let $\text {C}_n$ be the cyclic group of order $n$. For $g\in G$, let ${\mathrm{o}}(g)$ denote the order of $g$. Let $\phi $ denote the Euler totient function. We show that $\sum _{g \in \text {C}_n} \phi ({\mathrm{o}}(g))\geq \sum _{g \in G} \phi ({\mathrm{o}}(g))$, with equality if and only if $G$ is isomorphic to $\text {C}_n$. As an application, we show that among all finite groups of a given order, the cyclic group of that order has the maximum number of bidirectional edges in its directed power graph.
We study the McKay correspondence for representations of the cyclic group of order $p$ in characteristic $p$. The main tool is the motivic integration generalized to quotient stacks associated to representations. Our version of the change of variables formula leads to an explicit computation of the stringy invariant of the quotient variety. A consequence is that a crepant resolution of the quotient variety (if any) has topological Euler characteristic $p$ as in the tame case. Also, we link a crepant resolution with a count of Artin–Schreier extensions of the power series field with respect to weights determined by ramification jumps and the representation.
We study the action of the formal affine Hecke algebra on the formal group algebra, and show that the the formal affine Hecke algebra has a basis indexed by the Weyl group as a module over the formal group algebra. We also define a concept called the normal formal group law, which we use to simplify the relations of the generators of the formal affine Demazure algebra and the formal affine Hecke algebra.
Let $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}G$ be a finite 2-group. If $G$ is of coclass 2 or $(G,Z(G))$ is a Camina pair, then $G$ admits a noninner automorphism of order 2 or 4 leaving the Frattini subgroup elementwise fixed.
A subgroup $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}H$ of a finite group $G$ is said to be S-semipermutable in $G$ if $H$ permutes with every Sylow $q$-subgroup of $G$ for all primes $q$ not dividing $|H |$. A finite group $G$ is an MS-group if the maximal subgroups of all the Sylow subgroups of $G$ are S-semipermutable in $G$. The aim of the present paper is to characterise the finite MS-groups.
In this paper we shall give characterizations of the closed subsemigroups of a Clifford semigroup. Also, we shall show that the class of all Clifford semigroups satisfies the strong isomorphism property and so is globally determined. Thus the results obtained by Kobayashi [‘Semilattices are globally determined’, Semigroup Forum29 (1984), 217–222] and by Gould and Iskra [‘Globally determined classes of semigroups’ Semigroup Forum28 (1984), 1–11] are generalized.
For a discrete abelian cancellative semigroup $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}S$ with a weight function $\omega $ and associated multiplier semigroup $M_\omega (S)$ consisting of $\omega $-bounded multipliers, the multiplier algebra of the Beurling algebra of $(S,\omega )$ coincides with the Beurling algebra of $M_\omega (S)$ with the induced weight.
The present paper is related to some recent studies in Abdollahi and Russo [‘On a problem of P. Hall for Engel words’, Arch. Math. (Basel)97 (2011), 407–412] and Fernández-Alcober et al. [‘A note on conciseness of Engel words’, Comm. Algebra40 (2012), 2570–2576] on the position of the $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}n$-Engel marginal subgroup $E^*_n(G)$ of a group $G$, when $n=3,4$. Describing the size of $E^*_n(G)$ for $n=3,4$, we show some generalisations of classical results on the partial margins of $E^*_3(G)$ and $E^*_4(G)$.
In this paper we prove that every group with at most 26 normalisers is soluble. This gives a positive answer to Conjecture 3.6 in the author’s paper [On groups with a finite number of normalisers’, Bull. Aust. Math. Soc.86 (2012), 416–423].
We give a computationally effective criterion for determining whether a finite-index subgroup of $\mathrm{SL}_2(\mathbf{Z})$ is a congruence subgroup, extending earlier work of Hsu for subgroups of $\mathrm{PSL}_2(\mathbf{Z})$.
We prove that if $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}S$ is a finite subset of an ordered group that generates a nonabelian ordered group, then $|S^2|\geq 3|S|-2$. This generalizes a classical result from the theory of set addition.
Given a cardinal $\lambda $ with $\lambda =\lambda ^{\aleph _0}$, we show that there is a field of cardinality $\lambda $ whose automorphism group is a free group of rank $2^\lambda $. In the proof of this statement, we develop general techniques that enable us to realize certain groups as the automorphism group of structures of a given cardinality. They allow us to show that analogues of this result hold for free objects in various varieties of groups. For example, the free abelian group of rank $2^\lambda $ is the automorphism group of a field of cardinality $\lambda $ whenever $\lambda $ is a cardinal with $\lambda =\lambda ^{\aleph _0}$. Moreover, we apply these techniques to show that consistently the assumption that $\lambda =\lambda ^{\aleph _0}$ is not necessary for the existence of a field of cardinality $\lambda $ whose automorphism group is a free group of rank $2^\lambda $. Finally, we use them to prove that the existence of a cardinal $\lambda $ of uncountable cofinality with the property that there is no field of cardinality $\lambda $ whose automorphism group is a free group of rank greater than $\lambda $ implies the existence of large cardinals in certain inner models of set theory.
As a contribution to an eventual solution of the problem of the determination of the maximal subgroups of the Monster we prove that the Monster does not contain any subgroup isomorphic to $\mathrm{PSL}_2(27)$.
We describe algorithms that allow the computation of fundamental domains in the Bruhat–Tits tree for the action of discrete groups arising from quaternion algebras. These algorithms are used to compute spaces of rigid modular forms of arbitrary even weight, and we explain how to evaluate such forms to high precision using overconvergent methods. Finally, these algorithms are applied to the calculation of conjectural equations for the canonical embedding of p-adically uniformizable rational Shimura curves. We conclude with an example in the case of a genus 4 Shimura curve.
Let $G(q)$ be a finite Chevalley group, where $q$ is a power of a good prime $p$, and let $U(q)$ be a Sylow $p$-subgroup of $G(q)$. Then a generalized version of a conjecture of Higman asserts that the number $k(U(q))$ of conjugacy classes in $U(q)$ is given by a polynomial in $q$ with integer coefficients. In [S. M. Goodwin and G. Röhrle, J. Algebra 321 (2009) 3321–3334], the first and the third authors of the present paper developed an algorithm to calculate the values of $k(U(q))$. By implementing it into a computer program using $\mathsf{GAP}$, they were able to calculate $k(U(q))$ for $G$ of rank at most five, thereby proving that for these cases $k(U(q))$ is given by a polynomial in $q$. In this paper we present some refinements and improvements of the algorithm that allow us to calculate the values of $k(U(q))$ for finite Chevalley groups of rank six and seven, except $E_7$. We observe that $k(U(q))$ is a polynomial, so that the generalized Higman conjecture holds for these groups. Moreover, if we write $k(U(q))$ as a polynomial in $q-1$, then the coefficients are non-negative.
Under the assumption that $k(U(q))$ is a polynomial in $q-1$, we also give an explicit formula for the coefficients of $k(U(q))$ of degrees zero, one and two.
We show that the modules for the Frobenius kernel of a reductive algebraic group over
an algebraically closed field of positive characteristic $p$ induced from the $p$-regular blocks of its parabolic subgroups can be $\mathbb{Z}$-graded. In particular, we obtain that the modules induced from the
simple modules of $p$-regular highest weights are rigid and determine their Loewy series,
assuming the Lusztig conjecture on the irreducible characters for the reductive
algebraic groups, which is now a theorem for large $p$. We say that a module is rigid if and only if it admits a unique
filtration of minimal length with each subquotient semisimple, in which case the
filtration is called the Loewy series.
In this paper, we establish that complete Kac–Moody groups over finite fields are abstractly simple. The proof makes essential use of Mathieu and Rousseau’s construction of complete Kac–Moody groups over fields. This construction has the advantage that both real and imaginary root spaces of the Lie algebra lift to root subgroups over arbitrary fields. A key point in our proof is the fact, of independent interest, that both real and imaginary root subgroups are contracted by conjugation of positive powers of suitable Weyl group elements.
We give a generalized and self-contained account of Haglund–Paulin’s wallspaces and Sageev’s construction of the CAT(0) cube complex dual to a wallspace. We examine criteria on a wallspace leading to finiteness properties of its dual cube complex. Our discussion is aimed at readers wishing to apply these methods to produce actions of groups on cube complexes and understand their nature. We develop the wallspace ideas in a level of generality that facilitates their application. Our main result describes the structure of dual cube complexes arising from relatively hyperbolic groups. Let $H_1,\ldots, H_s$ be relatively quasiconvex codimension-1 subgroups of a group $G$ that is hyperbolic relative to $P_1, \ldots, P_r$. We prove that $G$ acts relatively cocompactly on the associated dual CAT(0) cube complex $C$. This generalizes Sageev’s result that $C$ is cocompact when $G$ is hyperbolic. When $P_1,\ldots, P_r$ are abelian, we show that the dual CAT(0) cube complex $C$ has a $G$-cocompact CAT(0) truncation.
We show Exel’s tight representation of an inverse semigroup can be described in terms of joins and covers in the natural partial order. Using this, we show that the ${C}^{\ast } $-algebra of a finitely aligned category of paths, developed by Spielberg, is the tight ${C}^{\ast } $-algebra of a natural inverse semigroup. This includes as a special case finitely aligned higher-rank graphs: that is, for such a higher-rank graph $\Lambda $, the tight ${C}^{\ast } $-algebra of the inverse semigroup associated to $\Lambda $ is the same as the ${C}^{\ast } $-algebra of $\Lambda $.