We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We show that every non-elementary hyperbolic group $\G $ admits a proper affine isometric action on $L^p(\bd \G \times \bd \G )$, where $\bd \G $ denotes the boundary of $\G $ and $p$ is large enough. Our construction involves a $\G $-invariant measure on $\bd \G \times \bd \G $ analogous to the Bowen–Margulis measure from the ${\rm CAT}(-1)$ setting, as well as a geometric, Busemann-type cocycle. We also deduce that $\G $ admits a proper affine isometric action on the first $\ell ^p$-cohomology group $H^1_{(p)}(\G )$ for large enough $p$.
We characterize the abelian groups $G$ for which the functors $\mathrm{Ext} (G, - )$ or $\mathrm{Ext} (- , G)$ commute with or invert certain direct sums or direct products.
Towards an involutive analogue of a result on the semisimplicity of ${\ell }^{1} (S)$ by Hewitt and Zuckerman, we show that, given an abelian $\ast $-semigroup $S$, the commutative convolution Banach $\ast $-algebra ${\ell }^{1} (S)$ is $\ast $-semisimple if and only if Hermitian bounded semicharacters on $S$ separate the points of $S$; and we search for an intrinsic separation property on $S$ equivalent to $\ast $-semisimplicity. Very many natural involutive analogues of Hewitt and Zuckerman’s separation property are shown not to work, thereby exhibiting intricacies involved in analysis on $S$.
The commutativity degree of a finite group is the probability that two randomly chosen group elements commute. The object of this paper is to compute the commutativity degree of a class of finite groups obtained by semidirect product of two finite abelian groups. As a byproduct of our result, we provide an affirmative answer to an open question posed by Lescot.
so that ${T}_{\exists } (X)$ is a subsemigroup of ${ \mathcal{T} }_{X} $. In this paper, we endow ${T}_{\exists } (X)$ with the natural partial order and investigate when two elements are related, then find elements which are compatible. Also, we characterise the minimal and maximal elements.
Let $G$ be a finite $p$-solvable group and let ${G}^{\ast } $ be the set of elements of primary and biprimary orders of $G$. Suppose that the conjugacy class sizes of ${G}^{\ast } $ are $\{ 1, {p}^{a} , n, {p}^{a} n\} $, where the prime $p$ divides the positive integer $n$ and ${p}^{a} $ does not divide $n$. Then $G$ is, up to central factors, a $\{ p, q\} $-group with $p$ and $q$ two distinct primes. In particular, $G$ is solvable.
Bob Oliver conjectures that if p is an odd prime and S is a finite p-group, then the Oliver subgroup contains the Thompson subgroup Je(S). A positive resolution of this conjecture would give the existence and uniqueness of centric linking systems for fusion systems at odd primes. Using the ideas and work of Glauberman, we prove that if p ≥ 5, G is a finite p-group, and V is an elementary abelian p-group which is an F-module for G, then there exists a quadratic offender which is 2-subnormal (normal in its normal closure) in G. We apply this to show that Oliver's Conjecture holds provided that the quotient has class at most log2(p − 2) + 1, or p ≥ 5 and G is equal to its own Baumann subgroup.
We develop a theory of 2-fusion systems of even characteristic, and use that theory to show that all S3-free saturated 2-fusion systems are constrained. This supplies a new proof of Glauberman's Theorem on S4-free groups and its various corollaries.
For any finite group G, we impose an algebraic condition, the Gnil-coset condition, and prove that any finite Oliver group G satisfying the Gnil-coset condition has a smooth action on some sphere with isolated fixed points at which the tangent G-modules are not isomorphic to each other. Moreover, we prove that, for any finite non-solvable group G not isomorphic to Aut(A6) or PΣL(2, 27), the Gnil-coset condition holds if and only if rG ≥ 2, where rG is the number of real conjugacy classes of elements of G not of prime power order. As a conclusion, the Laitinen Conjecture holds for any finite non-solvable group not isomorphic to Aut(A6).
We study bounds on nilpotence in H*(BG), the mod p cohomology of the classifying space of a compact Lie group G. Part of this is a report of our previous work on this problem, updated to reflect the consequences of Peter Symonds's recent verification of Dave Benson's Regularity Conjecture. New results are given for finite p-groups, leading to good bounds on nilpotence in H*(BP) determined by the subgroup structure of the p-group P.
After summarizing from previous papers the definitions of the concepts associated with nets, i.e. triples of 6-transpositions in the Monster up to braiding, we give some results.
The well-known fiber dimension theorem in algebraic geometry says that for every morphism f:X→Y of integral schemes of finite type the dimension of every fiber of f is at least dim X−dim Y. This has recently been generalized by Brosnan, Reichstein and Vistoli to certain morphisms of algebraic stacks f:𝒳→𝒴, where the usual dimension is replaced by essential dimension. We will prove a general version for morphisms of categories fibered in groupoids. Moreover, we will prove a variant of this theorem, where essential dimension and canonical dimension are linked. These results let us relate essential dimension to canonical dimension of algebraic groups. In particular, using the recent computation of the essential dimension of algebraic tori by MacDonald, Meyer, Reichstein and the author, we establish a lower bound on the canonical dimension of algebraic tori.
We revise the matching algorithm of Noeske (LMS J. Comput. Math. 11 (2008) 213–222) and introduce a new approach via composition series to expedite the calculations. Furthermore, we show how the matching algorithm may be applied in the more general and frequently occurring setting that we are only given subalgebras of the condensed algebras which each contain the separable algebra of one of their Wedderburn–Malcev decompositions.
We identify the groups ${\text{PSU} }_{6} (2)$, ${\text{PSU} }_{6} (2){: }2$, ${\text{PSU} }_{6} (2){: }3$ and $\text{Aut} ({\text{PSU} }_{6} (2))$ from the structure of the centralizer of an element of order three.
Let $w$ be a multilinear commutator word. We prove that if $e$ is a positive integer and $G$ is a finite group in which any nilpotent subgroup generated by $w$-values has exponent dividing $e$, then the exponent of the corresponding verbal subgroup $w(G)$ is bounded in terms of $e$ and $w$only.
For a finite Clifford inverse algebra $A$, with natural order meet-semilattice ${Y}_{A} $ and group of units ${G}_{A} $, we show that the inverse monoid obtained as the semidirect product ${ Y}_{A}^{1} {\mathop{\ast }\nolimits}_{\rho } {G}_{A} $ has a log-polynomial free spectrum whenever $\rho $ is a term-expressible left action of ${G}_{A} $ on ${Y}_{A} $ and all subgroups of $A$ are nilpotent. This yields a number of examples of finite inverse monoids satisfying the Seif conjecture on finite monoids whose free spectra are not doubly exponential.
We present a new algorithm for constructing a Chevalley basis for any Chevalley Lie algebra over a finite field. This is a necessary component for some constructive recognition algorithms of exceptional quasisimple groups of Lie type. When applied to a simple Chevalley Lie algebra in characteristic p⩾5, our algorithm has complexity involving the seventh power of the Lie rank, which is likely to be close to best possible.
When a minimal Heilbronn character θ is unfaithful on a Sylow p-subgroup P of a finite group G, we know that G is quasi-simple, p is odd, P is cyclic, NG(P) is maximal and either NG(P) is the unique maximal subgroup containing Ω1(P) or G/Z(G) ≅ L2(q) for q an odd prime with p dividing q − 1. In this paper we examine the exceptional case, where G/Z(G) ≅ L2(q), explicitly constructing unfaithful minimal Heilbronn characters from the non-principal irreducible characters of G.
Let Un(q) denote the upper triangular group of degree n over the finite field with q elements. It is known that irreducible constituents of supercharacters partition the set of all irreducible characters Irr(Un(q)). In this paper we present a correspondence between supercharacters and pattern subgroups of the form Uk(q) ∩ wUk(q), where w is a monomial matrix in GLk(q) for some k < n.