We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $K$ be a number field. For any system of semisimple mod $\ell$ Galois representations $\{{\it\phi}_{\ell }:\text{Gal}(\bar{\mathbb{Q}}/K)\rightarrow \text{GL}_{N}(\mathbb{F}_{\ell })\}_{\ell }$ arising from étale cohomology (Definition 1), there exists a finite normal extension $L$ of $K$ such that if we denote ${\it\phi}_{\ell }(\text{Gal}(\bar{\mathbb{Q}}/K))$ and ${\it\phi}_{\ell }(\text{Gal}(\bar{\mathbb{Q}}/L))$ by $\bar{{\rm\Gamma}}_{\ell }$ and $\bar{{\it\gamma}}_{\ell }$, respectively, for all $\ell$ and let $\bar{\mathbf{S}}_{\ell }$ be the $\mathbb{F}_{\ell }$-semisimple subgroup of $\text{GL}_{N,\mathbb{F}_{\ell }}$ associated to $\bar{{\it\gamma}}_{\ell }$ (or $\bar{{\rm\Gamma}}_{\ell }$) by Nori’s theory [On subgroups of$\text{GL}_{n}(\mathbb{F}_{p})$, Invent. Math. 88 (1987), 257–275] for sufficiently large $\ell$, then the following statements hold for all sufficiently large $\ell$.
A(i) The formal character of $\bar{\mathbf{S}}_{\ell }{\hookrightarrow}\text{GL}_{N,\mathbb{F}_{\ell }}$ (Definition 1) is independent of $\ell$ and equal to the formal character of $(\mathbf{G}_{\ell }^{\circ })^{\text{der}}{\hookrightarrow}\text{GL}_{N,\mathbb{Q}_{\ell }}$, where $(\mathbf{G}_{\ell }^{\circ })^{\text{der}}$ is the derived group of the identity component of $\mathbf{G}_{\ell }$, the monodromy group of the corresponding semi-simplified $\ell$-adic Galois representation ${\rm\Phi}_{\ell }^{\text{ss}}$.
A(ii) The non-cyclic composition factors of $\bar{{\it\gamma}}_{\ell }$ and $\bar{\mathbf{S}}_{\ell }(\mathbb{F}_{\ell })$ are identical. Therefore, the composition factors of $\bar{{\it\gamma}}_{\ell }$ are finite simple groups of Lie type of characteristic $\ell$ and are cyclic groups.
B(i) The total $\ell$-rank $\text{rk}_{\ell }\bar{{\rm\Gamma}}_{\ell }$ of $\bar{{\rm\Gamma}}_{\ell }$ (Definition 14) is equal to the rank of $\bar{\mathbf{S}}_{\ell }$ and is therefore independent of $\ell$.
B(ii) The $A_{n}$-type $\ell$-rank $\text{rk}_{\ell }^{A_{n}}\bar{{\rm\Gamma}}_{\ell }$ of $\bar{{\rm\Gamma}}_{\ell }$ (Definition 14) for $n\in \mathbb{N}\setminus \{1,2,3,4,5,7,8\}$ and the parity of $(\text{rk}_{\ell }^{A_{4}}\bar{{\rm\Gamma}}_{\ell })/4$ are independent of $\ell$.
We show that the cyclic and epicyclic categories which play a key role in the encoding of cyclic homology and the lambda operations, are obtained from projective geometry in characteristic one over the infinite semifield of max-plus integers ℤmax. Finite-dimensional vector spaces are replaced by modules defined by restriction of scalars from the one-dimensional free module, using the Frobenius endomorphisms of ℤmax. The associated projective spaces are finite and provide a mathematically consistent interpretation of Tits's original idea of a geometry over the absolute point. The self-duality of the cyclic category and the cyclic descent number of permutations both acquire a geometric meaning.
Under endoscopic assumptions about $L$-packets of unitary groups, we prove the local Gan–Gross–Prasad conjecture for tempered representations of unitary groups over $p$-adic fields. Roughly, this conjecture says that branching laws for $U(n-1)\subset U(n)$ can be computed using epsilon factors.
This paper deals with the geometric local theta correspondence at the Iwahori level for dual reductive pairs of type II over a non-Archimedean field $F$ of characteristic $p\neq 2$ in the framework of the geometric Langlands program. First we construct and study the geometric version of the invariants of the Weil representation of the Iwahori-Hecke algebras. In the particular case of $(\mathbf{GL}_{1},\mathbf{GL}_{m})$ we give a complete geometric description of the corresponding category. The second part of the paper deals with geometric local Langlands functoriality at the Iwahori level in a general setting. Given two reductive connected groups $G$ and $H$ over $F$, and a morphism ${\check{G}}\times \text{SL}_{2}\rightarrow \check{H}$ of Langlands dual groups, we construct a bimodule over the affine extended Hecke algebras of $H$ and $G$ that should realize the geometric local Arthur–Langlands functoriality at the Iwahori level. Then, we propose a conjecture describing the geometric local theta correspondence at the Iwahori level constructed in the first part in terms of this bimodule, and we prove our conjecture for pairs $(\mathbf{GL}_{1},\mathbf{GL}_{m})$.
Let $G$ be a simple algebraic group. A closed subgroup $H$ of $G$ is said to be spherical if it has a dense orbit on the flag variety $G/B$ of $G$. Reductive spherical subgroups of simple Lie groups were classified by Krämer in 1979. In 1997, Brundan showed that each example from Krämer’s list also gives rise to a spherical subgroup in the corresponding simple algebraic group in any positive characteristic. Nevertheless, up to now there has been no classification of all such instances in positive characteristic. The goal of this paper is to complete this classification. It turns out that there is only one additional instance (up to isogeny) in characteristic 2 which has no counterpart in Krämer’s classification. As one of our key tools, we prove a general deformation result for subgroup schemes that allows us to deduce the sphericality of subgroups in positive characteristic from the same property for subgroups in characteristic zero.
Estimating numerically the spectral radius of a random walk on a non-amenable graph is complicated, since the cardinality of balls grows exponentially fast with the radius. We propose an algorithm to get a bound from below for this spectral radius in Cayley graphs with finitely many cone types (including for instance hyperbolic groups). In the genus 2 surface group, it improves by an order of magnitude the previous best bound, due to Bartholdi.
Let $S$ be a finitely generated pro-$p$ group. Let ${\mathcal{E}}_{p^{\prime }}(S)$ be the class of profinite groups $G$ that have $S$ as a Sylow subgroup, and such that $S$ intersects nontrivially with every nontrivial normal subgroup of $G$. In this paper, we investigate whether or not there is a bound on $|G:S|$ for $G\in {\mathcal{E}}_{p^{\prime }}(S)$. For instance, we give an example where ${\mathcal{E}}_{p^{\prime }}(S)$ contains an infinite ascending chain of soluble groups, and on the other hand show that $|G:S|$ is bounded in the case where $S$ is just infinite.
We remedy an omission in the proof of Proposition 2.7 of the paper ‘Cohomology and profinite topologies for solvable groups of finite rank’, Bull. Aust. Math. Soc.86 (2012), 254–265. This proposition states that a solvable group with finite abelian section rank has merely finitely many subgroups of any given index.
This paper revisits the solution of the word problem for ${\it\omega}$-terms interpreted over finite aperiodic semigroups, obtained by J. McCammond. The original proof of correctness of McCammond’s algorithm, based on normal forms for such terms, uses McCammond’s solution of the word problem for certain Burnside semigroups. In this paper, we establish a new, simpler, correctness proof of McCammond’s algorithm, based on properties of certain regular languages associated with the normal forms. This method leads to new applications.
Two semigroups are distinct if they are neither isomorphic nor anti-isomorphic. Although there exist $15\,973$ pairwise distinct semigroups of order six, only four are known to be non-finitely based. In the present article, the finite basis property of the other $15\,969$ distinct semigroups of order six is verified. Since all semigroups of order five or less are finitely based, the four known non-finitely based semigroups of order six are the only examples of minimal order.
We compute coherent presentations of Artin monoids, that is, presentations by generators, relations, and relations between the relations. For that, we use methods of higher-dimensional rewriting that extend Squier’s and Knuth–Bendix’s completions into a homotopical completion–reduction, applied to Artin’s and Garside’s presentations. The main result of the paper states that the so-called Tits–Zamolodchikov 3-cells extend Artin’s presentation into a coherent presentation. As a byproduct, we give a new constructive proof of a theorem of Deligne on the actions of an Artin monoid on a category.
This paper is devoted to determine the connectedness of the branch loci of the moduli space of non-orientable unbordered Klein surfaces. We obtain a result similar to Nielsen's in order to determine topological conjugacy of automorphisms of prime order on such surfaces. Using this result we prove that the branch locus is connected for surfaces of topological genus 4 and 5.
We define a pseudometric on the set of all unbounded subsets of a metric space. The Kolmogorov quotient of this pseudometric space is a complete metric space. The definition of the pseudometric is guided by the principle that two unbounded subsets have distance 0 whenever they stay sublinearly close. Based on this pseudometric we introduce and study a general concept of boundaries of metric spaces. Such a boundary is the closure of a subset in the Kolmogorov quotient determined by an arbitrarily chosen family of unbounded subsets. Our interest lies in those boundaries which we get by choosing unbounded cyclic sub(semi)groups of a finitely generated group (or more general of a compactly generated, locally compact Hausdorff group). We show that these boundaries are quasi-isometric invariants and determine them in the case of nilpotent groups as a disjoint union of certain spheres (or projective spaces). In addition we apply this concept to vertex-transitive graphs with polynomial growth and to random walks on nilpotent groups.
A monoid S satisfies Condition (A) if every locally cyclic left S-act is cyclic. This condition first arose in Isbell's work on left perfect monoids, that is, monoids such that every left S-act has a projective cover. Isbell showed that S is left perfect if and only if every cyclic left S-act has a projective cover and Condition (A) holds. Fountain built on Isbell's work to show that S is left perfect if and only if it satisfies Condition (A) together with the descending chain condition on principal right ideals, MR. We note that a ring is left perfect (with an analogous definition) if and only if it satisfies MR. The appearance of Condition (A) in this context is, therefore, monoid specific. Condition (A) has a number of alternative characterisations, in particular, it is equivalent to the ascending chain condition on cyclic subacts of any left S-act. In spite of this, it remains somewhat esoteric. The first aim of this paper is to investigate the preservation of Condition (A) under basic semigroup-theoretic constructions. Recently, Khosravi, Ershad and Sedaghatjoo have shown that every left S-act has a strongly flat or Condition (P) cover if and only if every cyclic left S-act has such a cover and Condition (A) holds. Here we find a range of classes of S-acts $\mathcal{C}$ such that every left S-act has a cover from $\mathcal{C}$ if and only if every cyclic left S-act does and Condition (A) holds. In doing so we find a further characterisation of Condition (A) purely in terms of the existence of covers of a certain kind. Finally, we make some observations concerning left perfect monoids and investigate a class of monoids close to being left perfect, which we name left$\mathcal{IP}$a-perfect.
We construct cocompact lattices Γ'0 < Γ0 in the group G = PGLd$({\mathbb{F}_q(\!(t)\!)\!})$ which are type-preserving and act transitively on the set of vertices of each type in the building Δ associated to G. These lattices are commensurable with the lattices of Cartwright–Steger Isr. J. Math.103 (1998), 125–140. The stabiliser of each vertex in Γ'0 is a Singer cycle and the stabiliser of each vertex in Γ0 is isomorphic to the normaliser of a Singer cycle in PGLd(q). We show that the intersections of Γ'0 and Γ0 with PSLd$({\mathbb{F}_q(\!(t)\!)\!})$ are lattices in PSLd$({\mathbb{F}_q(\!(t)\!)\!})$, and identify the pairs (d, q) such that the entire lattice Γ'0 or Γ0 is contained in PSLd$({\mathbb{F}_q(\!(t)\!)\!})$. Finally we discuss minimality of covolumes of cocompact lattices in SL3$({\mathbb{F}_q(\!(t)\!)\!})$. Our proofs combine the construction of Cartwright–Steger Isr. J. Math.103 (1998), 125–140 with results about Singer cycles and their normalisers, and geometric arguments.
We show that two metacyclic groups of the following types are isomorphic if they have the same character tables: (i) split metacyclic groups, (ii) the metacyclic p-groups and (iii) the metacyclic {p, q}-groups, where p, q are odd primes.
Given two finitely generated groups that coarsely embed into a Hilbert space, it is known that their wreath product also embeds coarsely into a Hilbert space. We introduce a wreath product construction for general metric spaces $X,Y,Z$ and derive a condition, called the (${\it\delta}$-polynomial) path lifting property, such that coarse embeddability of $X,Y$ and $Z$ implies coarse embeddability of $X\wr _{Z}Y$. We also give bounds on the compression of $X\wr _{Z}Y$ in terms of ${\it\delta}$ and the compressions of $X,Y$ and $Z$.
The Wielandt subgroup of a group $G$, denoted by ${\it\omega}(G)$, is the intersection of the normalisers of all subnormal subgroups of $G$. The terms of the Wielandt series of $G$ are defined, inductively, by putting ${\it\omega}_{0}(G)=1$ and ${\it\omega}_{i+1}(G)/{\it\omega}_{i}(G)={\it\omega}(G/{\it\omega}_{i}(G))$. In this paper, we investigate the relations between the$p$-length of a $p$-soluble finite group and the Wielandt series of its Sylow $p$-subgroups. Some recent results are improved.
The celebrated Smith–Minkowski–Siegel mass formula expresses the mass of a quadratic lattice $(L,Q)$ as a product of local factors, called the local densities of $(L,Q)$. This mass formula is an essential tool for the classification of integral quadratic lattices. In this paper, we will describe the local density formula explicitly by observing the existence of a smooth affine group scheme $\underline{G}$ over $\mathbb{Z}_{2}$ with generic fiber $\text{Aut}_{\mathbb{Q}_{2}}(L,Q)$, which satisfies $\underline{G}(\mathbb{Z}_{2})=\text{Aut}_{\mathbb{Z}_{2}}(L,Q)$. Our method works for any unramified finite extension of $\mathbb{Q}_{2}$. Therefore, we give a long awaited proof for the local density formula of Conway and Sloane and discover its generalization to unramified finite extensions of $\mathbb{Q}_{2}$. As an example, we give the mass formula for the integral quadratic form $Q_{n}(x_{1},\dots ,x_{n})=x_{1}^{2}+\cdots +x_{n}^{2}$ associated to a number field $k$ which is totally real and such that the ideal $(2)$ is unramified over $k$.