We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We give a new direct proof of the local Tb theorem in the Euclidean setting and under the assumption of dual exponents. This theorem provides a flexible framework for proving the boundedness of a Calderón–Zygmund operator, supposing the existence of systems of local accretive functions. We assume that the integrability exponents on these systems of functions are of the form 1/p + 1/q ⩽ 1, the ‘dual case’ 1/p + 1/q = 1 being the most difficult one. Our proof is direct: it avoids a reduction to the perfect dyadic case unlike some previous approaches. The principal point of interest is in the use of random grids and the corresponding construction of the corona. We also use certain twisted martingale transform inequalities.
Let $(X,d,{\it\mu})$ be a metric measure space satisfying the doubling, reverse doubling and noncollapsing conditions. Let $\mathscr{L}$ be a nonnegative self-adjoint operator on $L^{2}(X,d{\it\mu})$ satisfying a pointwise Gaussian upper bound estimate and Hölder continuity for its heat kernel. In this paper, we introduce the Hardy spaces $H_{\mathscr{L}}^{p}(X)$, $0<p\leq 1$, associated to $\mathscr{L}$ in terms of grand maximal functions and show that these spaces are equivalently characterised by radial and nontangential maximal functions.
We prove continuity in generalized parabolic Morrey spaces of sublinear operators generated by the parabolic Calderón—Zygmund operator and by the commutator of this operator with bounded mean oscillation (BMO) functions. As a consequence, we obtain a global -regularity result for the Cauchy—Dirichlet problem for linear uniformly parabolic equations with vanishing mean oscillation (VMO) coefficients.
The purpose of the paper is to introduce a novel “splitting” procedure which can be helpful in the derivation of explicit formulas for various Bellman functions. As an illustration, we study the action of the dyadic maximal operator on $L^{p}$. The associated Bellman function $\mathfrak{B}_{p}$, introduced by Nazarov and Treil, was found explicitly by Melas with the use of combinatorial properties of the maximal operator, and was later rediscovered by Slavin, Stokolos and Vasyunin with the use of the corresponding Monge–Ampère partial differential equation. Our new argument enables an alternative simple derivation of $\mathfrak{B}_{p}$.
We extend the local non-homogeneous Tb theorem of Nazarov, Treil and Volberg to the setting of singular integrals with operator-valued kernel that act on vector-valued functions. Here, ‘vector-valued’ means ‘taking values in a function lattice with the UMD (unconditional martingale differences) property’. A similar extension (but for general UMD spaces rather than UMD lattices) of Nazarov-Treil-Volberg's global non-homogeneous Tb theorem was achieved earlier by the first author, and it has found applications in the work of Mayboroda and Volberg on square-functions and rectifiability. Our local version requires several elaborations of the previous techniques, and raises new questions about the limits of the vector-valued theory.
We consider the weighted $L_p$ solvability for divergence and nondivergence form parabolic equations with partially bounded mean oscillation (BMO) coefficients and certain positive potentials. As an application, global regularity in Morrey spaces for divergence form parabolic operators with partially BMO coefficients on a bounded domain is established.
Tent spaces of vector-valued functions were recently studied by Hytönen, van Neerven and Portal with an eye on applications to $H^{\infty }$-functional calculi. This paper extends their results to the endpoint cases $p=1$ and $p=\infty $ along the lines of earlier work by Harboure, Torrea and Viviani in the scalar-valued case. The main result of the paper is an atomic decomposition in the case $p=1$, which relies on a new geometric argument for cones. A result on the duality of these spaces is also given.
A Fourier restriction estimate is obtained for a broad class of conic surfaces by adding a weight to the usual underlying measure. The new restriction estimate exhibits a certain affine-invariance and implies the sharp ${L}^{p} - {L}^{q} $ restriction theorem for compact subsets of a type $k$ conical surface, up to an endpoint. Furthermore, the chosen weight is shown to be, in some quantitative sense, optimal. Appended is a discussion of type $k$ conical restriction theorems which addresses some anomalies present in the existing literature.
where ${ \mathcal{B} }_{\Omega } $ denotes the set of all rectangles on the plane whose longest side is parallel to some unit vector in $\Omega $ and $w(R)$ denotes $\int \nolimits \nolimits_{R} w$. In this paper we prove an almost-orthogonality principle for this maximal operator under certain conditions on the weight. The condition allows us to get the weighted norm inequality
when $w(x)= \vert x\hspace{-1.2pt}\mathop{\vert }\nolimits ^{a} $, $a\gt 0$, and when $\Omega $ is the set of unit vectors on the plane with cardinality $N$ sufficiently large.
Every bounded linear operator that maps ${H}^{1} $ to ${L}^{1} $ and ${L}^{2} $ to ${L}^{2} $ is bounded from ${L}^{p} $ to ${L}^{p} $ for each $p\in (1, 2)$, by a famous interpolation result of Fefferman and Stein. We prove ${L}^{p} $-norm bounds that grow like $O(1/ (p- 1))$ as $p\downarrow 1$. This growth rate is optimal, and improves significantly on the previously known exponential bound $O({2}^{1/ (p- 1)} )$. For $p\in (2, \infty )$, we prove explicit ${L}^{p} $ estimates on each bounded linear operator mapping ${L}^{\infty } $ to bounded mean oscillation ($\mathit{BMO}$) and ${L}^{2} $ to ${L}^{2} $. This $\mathit{BMO}$ interpolation result implies the ${H}^{1} $ result above, by duality. In addition, we obtain stronger results by working with dyadic ${H}^{1} $ and dyadic $\mathit{BMO}$. The proofs proceed by complex interpolation, after we develop an optimal dyadic ‘good lambda’ inequality for the dyadic $\sharp $-maximal operator.
In this paper we study Lp−Lr estimates of both the extension operator and the averaging operator associated with the algebraic variety S = {x ∈ : Q(x) = 0}, where Q(x) is a non-degenerate quadratic form over the finite field with q elements. We show that the Fourier decay estimate on S is good enough to establish the sharp averaging estimates in odd dimensions. In addition, the Fourier decay estimate enables us to simply extend the sharp L2−L4 conical extension result in , due to Mockenhaupt and Tao, to the L2−L2(d+1)/(d−1) estimate in all odd dimensions d ≥ 3. We also establish a sharp estimate of the mapping properties of the average operators in the case when the variety S in even dimensions d ≥ 4 contains a d/2-dimensional subspace.
In this paper we obtain some sharp ${L}^{p} - {L}^{q} $ estimates and the restricted weak-type endpoint estimates for the multiplier operator of negative order associated with conic surfaces in ${ \mathbb{R} }^{3} $ which have finite type degeneracy.
This paper is concerned with a mass concentration phenomenon for a two-dimensional nonelliptic Schrödinger equation. It is well known that this phenomenon occurs when the ${L}^{4} $-norm of the solution blows up in finite time. We extend this result to the case where a mixed norm of the solution blows up in finite time.
In this paper, we give analogues of the local uncertainty inequality for the Dunkl transform on ℝd, and indicate how the local uncertainty inequality implies a global uncertainty inequality.
Let f:ℝ→ℝ be a locally integrable function of bounded lower oscillation. The paper contains the proofs of sharp strong-type, weak-type and exponential estimates for the mean oscillation of f. In particular, this yields the precise value of the norm of the embedding BLO⊂BMOp, 1≤p<∞. Higher-dimensional analogues for anisotropic BLO spaces are also established.
We characterise the strong- and weak-type boundedness of the geometric fractional maximal operator between weighted Lebesgue spaces in the case 0<p≤q<∞, generalising and improving some older results.
Mixed norm inequalities for directional operators are closely related to the boundedness problems of several important operators in harmonic analysis. In this paper we prove weighted inequalities for some one-dimensional one-sided maximal functions. Then by applying these results, we establish mixed norm inequalities for directional maximal operators which are defined from these one-dimensional maximal functions. We also estimate the constants in these inequalities.
We investigate Laplace type and Laplace–Stieltjes type multipliers in the d-dimensional setting of the Dunkl harmonic oscillator with the associated group of reflections isomorphic to ℤd2 and in the related context of Laguerre function expansions of convolution type. We use Calderón–Zygmund theory to prove that these multiplier operators are bounded on weighted Lp, 1<p<∞, and from L1 to weak L1.
A finite measure supported by the unit sphere 𝕊n−1 in ℝn and absolutely continuous with respect to the natural measure on 𝕊n−1 is entirely determined by the restriction of its Fourier transform to a sphere of radius r if and only 2πr is not a zero of any Bessel function Jd+(n−2)/2 with d a nonnegative integer.
We introduce the one-sided local maximal operator and study its connection to the one-sided Ap conditions. We get a new characterization of the boundedness of the one-sided maximal operator on a quasi-Banach function space. We obtain applications to weighted Lebesgue spaces and variable-exponent Lebesgue spaces.