To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study stationary solutions to the Keller–Segel equation on curved planes. We prove the necessity of the mass being $8 \pi$ and a sharp decay bound. Notably, our results do not require the solutions to have a finite second moment, and thus are novel already in the flat case. Furthermore, we provide a correspondence between stationary solutions to the static Keller–Segel equation on curved planes and positively curved Riemannian metrics on the sphere. We use this duality to show the nonexistence of solutions in certain situations. In particular, we show the existence of metrics, arbitrarily close to the flat one on the plane, that do not support stationary solutions to the static Keller–Segel equation (with any mass). Finally, as a complementary result, we prove a curved version of the logarithmic Hardy–Littlewood–Sobolev inequality and use it to show that the Keller–Segel free energy is bounded from below exactly when the mass is $8 \pi$, even in the curved case.
We investigate the equilibrium configurations of closed planar elastic curves of fixed length, whose stiffness, also known as the bending rigidity, depends on an additional density variable. The underlying variational model relies on the minimisation of a bending energy with respect to shape and density and can be considered as a one-dimensional analogue of the Canham–Helfrich model for heterogeneous biological membranes. We present a generalised Euler–Bernoulli elastica functional featuring a density-dependent stiffness coefficient. In order to treat the inherent nonconvexity of the problem, we introduce an additional length scale in the model by means of a density gradient term. We derive the system of Euler–Lagrange equations and study the bifurcation structure of solutions with respect to the model parameters. Both analytical and numerical results are presented.
In this paper, we discuss the solvability of the p-k-Hessian inequality $\sigma _{k}^{\frac 1k} ( \lambda ( D_{i} (|Du|^{p-2}$$ D_{j}u ) ) ) \geq f(u)$ on the entire space $\mathbb {R}^{n}$ and provide a necessary and sufficient condition, which can be regarded as a generalized Keller–Osserman condition. Furthermore, we obtain the optimal regularity of solution.
In this paper, we prove existence results of a one-dimensional periodic solution to equations with the fractional Laplacian of order $s\in (1/2,1)$, singular nonlinearity and gradient term under various situations, including nonlocal contra-part of classical Lienard vector equations, as well other nonlocal versions of classical results know only in the context of second-order ODE. Our proofs are based on degree theory and Perron's method, so before that we need to establish a variety of priori estimates under different assumptions on the nonlinearities appearing in the equations. Besides, we obtain also multiplicity results in a regime where a priori bounds are lost and bifurcation from infinity occurs.
In this paper, we establish an infinite series expansion of Leray–Trudinger inequality, which is closely related with Hardy inequality and Moser Trudinger inequality. Our result extends early results obtained by Mallick and Tintarev [A. Mallick and C. Tintarev. An improved Leray-Trudinger inequality. Commun. Contemp. Math. 20 (2018), 17501034. OP 21] to the case with many logs. It should be pointed out that our result is about series expansion of Hardy inequality under the case $p=n$, which case is not considered by Gkikas and Psaradakis in [K. T. Gkikas and G. Psaradakis. Optimal non-homogeneous improvements for the series expansion of Hardy's inequality. Commun. Contemp. Math. doi:10.1142/S0219199721500310]. However, we can't obtain the optimal form by our method.
In this paper, we develop an extremely simple method to establish the sharpened Adams-type inequalities on higher-order Sobolev spaces $W^{m,\frac {n}{m}}(\mathbb {R}^n)$ in the entire space $\mathbb {R}^n$, which can be stated as follows: Given $\Phi \left ( t\right ) =e^{t}-\underset {j=0}{\overset {n-2}{\sum }} \frac {t^{j}}{j!}$ and the Adams sharp constant $\beta _{n,m}$. Then,
for any $0<\alpha <1$. Furthermore, we construct a proper test function sequence to derive the sharpness of the exponent $\alpha $ of the above Adams inequalities. Namely, we will show that if $\alpha \ge 1$, then the above supremum is infinite.
Our argument avoids applying the complicated blow-up analysis often used in the literature to deal with such sharpened inequalities.
where $f$ satisfies a uniform VMO condition with respect to the $x$-variable and is continuous with respect to ${\bf u}$. The growth condition with respect to the gradient variable is assumed a general one.
In this paper we study a normalized anisotropic Gauss curvature flow of strictly convex, closed hypersurfaces in the Euclidean space. We prove that the flow exists for all time and converges smoothly to the unique, strictly convex solution of a Monge-Ampère type equation and we obtain a new existence result of solutions to the Dual Orlicz-Minkowski problem for smooth measures, especially for even smooth measures.
In this paper we study the existence and the analytic dependence upon domain perturbation of the solutions of a nonlinear nonautonomous transmission problem for the Laplace equation. The problem is defined in a pair of sets consisting of a perforated domain and an inclusion whose shape is determined by a suitable diffeomorphism $\phi$. First we analyse the case in which the inclusion is a fixed domain. Then we will perturb the inclusion and study the arising boundary value problem and the dependence of a specific family of solutions upon the perturbation parameter $\phi$.
In this paper, we study the existence and concentration behaviour of multi-peak standing waves for a singularly perturbed Davey–Stewartson system, which arises in the theory of shallow water waves. For this purpose, we first give a sharp threshold of the existence of ground-state solutions to the related limiting problem. Next, combining the penalization method and the regularity theory of elliptic equations, we construct a family of positive solutions concentrating around any prescribed finite set of local minima, possibly degenerate, of the potential. A feature of this analysis is that we do not need any uniqueness or non-degeneracy conditions for the limiting equation. To the best of our knowledge, this paper is the first study dealing with the study of concentrating solutions for Davey–Stewartson systems. We emphasize that with respect to the classical Schrödinger equation, the presence of a singular integral operator in the Davey–Stewartson system forces the implementation of new ideas to obtain the existence of multi-peak solutions.
where $L(v)=-\textrm {div}(M(x)\nabla v)$ is a linear operator, $p\in (2,2^{*}]$ and $\lambda$ and $m$ sufficiently large. Then their asymptotical limit as $m\to +\infty$ is investigated showing different behaviours.
In this paper, we investigate the existence and nonexistence of results for a class of Hamiltonian-Choquard-type elliptic systems. We show the nonexistence of classical nontrivial solutions for the problem
\[ \begin{cases} -\Delta u + u= ( I_{\alpha} \ast |v|^{p} )v^{p-1} \text{ in } \mathbb{R}^{N},\\ -\Delta v + v= ( I_{\beta} \ast |u|^{q} )u^{q-1} \text{ in } \mathbb{R}^{N}, \\ u(x),v(x) \rightarrow 0 \text{ when } |x|\rightarrow \infty, \end{cases} \]
when $(N+\alpha )/p + (N+\beta )/q \leq 2(N-2)$ (if $N\geq 3$) and $(N+\alpha )/p + (N+\beta )/q \geq 2N$ (if $N=2$), where $I_{\alpha }$ and $I_{\beta }$ denote the Riesz potential. Second, via variational methods and the generalized Nehari manifold, we show the existence of a nontrivial non-negative solution or a Nehari-type ground state solution for the problem
\[ \begin{cases} -\Delta u + u= (I_{\alpha} \ast |v|^{\frac{\alpha}{2}+1})|v|^{\frac{\alpha}{2}-1}v + g(v) \hbox{ in } \mathbb{R}^{2},\\ - \Delta v + v= (I_{\beta} \ast |u|^{\frac{\beta}{2}+1})|u|^{\frac{\beta}{2}-1}u + f(u), \hbox{ in } \mathbb{R}^{2},\\ u,v \in H^{1}(\mathbb{R}^{2}), \end{cases} \]
where $\alpha ,\,\beta \in (0,\,2)$ and $f,\,g$ have exponential critical growth in the Trudinger–Moser sense.
We compare the solutions of two Poisson problems in a spherical shell with Robin boundary conditions, one with given data, and one where the data have been cap symmetrized. When the Robin parameters are nonnegative, we show that the solution to the symmetrized problem has larger convex means. Sending one of the Robin parameters to $+\infty $, we obtain mixed Robin/Dirichlet comparison results in shells. We prove similar results on balls and prove a comparison principle on generalized cylinders with mixed Robin/Neumann boundary conditions.
This paper is concerned with a prey–predator model with population flux by attractive transition. Our previous paper (Oeda and Kuto, 2018, Nonlinear Anal. RWA, 44, 589–615) obtained a bifurcation branch (connected set) of coexistence steady states which connects two semitrivial solutions. In Oeda and Kuto (2018, Nonlinear Anal. RWA, 44, 589–615), we also showed that any positive steady-state approaches a positive solution of either of two limiting systems, and moreover, one of the limiting systems is an equal diffusive competition model. This paper obtains the bifurcation structure of positive solutions to the other limiting system. Moreover, this paper implies that the global bifurcation branch of coexistence states consists of two parts, one of which is a simple curve running in a tubular domain near the set of positive solutions to the equal diffusive competition model, the other of which is a connected set characterized by positive solutions to the other limiting system.
By assuming that the Kirchhoff term has $K$ degeneracy points and other appropriated conditions, we have proved the existence of at least $K$ positive solutions other than those obtained in Santos Júnior and Siciliano [Positive solutions for a Kirchhoff problem with vanishing nonlocal term, J. Differ. Equ. 265 (2018), 2034–2043], which also have ordered $H_{0}^{1}(\Omega )$-norms. A concentration phenomena of these solutions is verified as a parameter related to the area of a region under the graph of the reaction term goes to zero.
Let $c_{kl} \in W^{1,\infty }(\Omega , \mathbb{C})$ for all $k,l \in \{1, \ldots , d\};$ and $\Omega \subset \mathbb{R}^{d}$ be open with uniformly $C^{2}$ boundary. We consider the divergence form operator $A_p = - \sum \nolimits _{k,l=1}^{d} \partial _l (c_{kl} \partial _k)$ in $L_p(\Omega )$ when the coefficient matrix satisfies $(C(x) \xi , \xi ) \in \Sigma _\theta$ for all $x \in \Omega$ and $\xi \in \mathbb{C}^{d}$, where $\Sigma _\theta$ be the sector with vertex 0 and semi-angle $\theta$ in the complex plane. We show that a sectorial estimate holds for $A_p$ for all $p$ in a suitable range. We then apply these estimates to prove that the closure of $-A_p$ generates a holomorphic semigroup under further assumptions on the coefficients. The contractivity and consistency properties of these holomorphic semigroups are also considered.
where $\lambda$, $\bar {\nu }\in {{\mathfrak R}}$, $s\in (0,1)$, $2^{*}_{s}=({2N}/{N-2s})\,(N>2s)$, $(-\Delta )^{s}$ is the fractional Laplace operator, $\Omega \subset {{\mathfrak R}}^{N}$ is a bounded domain with smooth boundary and $\varphi _{1}$ is the first positive eigenfunction of the fractional Laplace under the condition $u=0$ in ${{\mathfrak R}}^{N}\setminus \Omega$. Under suitable conditions on $\lambda$ and $\bar {\nu }$ and using a Lyapunov-Schmidt reduction method, we prove the fractional version of the Lazer-McKenna conjecture which says that the equation above has infinitely many solutions as $|\bar \nu | \to \infty$ .
We will give a new proof of the existence of hypercylinder expander of the inverse mean curvature flow which is a radially symmetric homothetic soliton of the inverse mean curvature flow in $\mathbb {R}^{n}\times \mathbb {R}$, $n\ge 2$, of the form $(r,y(r))$ or $(r(y),y)$, where $r=|x|$, $x\in \mathbb {R}^{n}$, is the radially symmetric coordinate and $y\in \mathbb {R}$. More precisely, for any $\lambda>\frac {1}{n-1}$ and $\mu>0$, we will give a new proof of the existence of a unique even solution $r(y)$ of the equation $\frac {r^{\prime \prime }(y)}{1+r^{\prime }(y)^{2}}=\frac {n-1}{r(y)}-\frac {1+r^{\prime }(y)^{2}}{\lambda (r(y)-yr^{\prime }(y))}$ in $\mathbb {R}$ which satisfies $r(0)=\mu $, $r^{\prime }(0)=0$ and $r(y)>yr^{\prime }(y)>0$ for any $y\in \mathbb {R}$. We will prove that $\lim _{y\to \infty }r(y)=\infty $ and $a_{1}:=\lim _{y\to \infty }r^{\prime }(y)$ exists with $0\le a_{1}<\infty $. We will also give a new proof of the existence of a constant $y_{1}>0$ such that $r^{\prime \prime }(y_{1})=0$, $r^{\prime \prime }(y)>0$ for any $0<y<y_{1}$, and $r^{\prime \prime }(y)<0$ for any $y>y_{1}$.
In this paper, we focus on a Kirchhoff-type equation with singular potential and critical exponent. By virtue of the generalized version of Lions-type theorem and the Nehari–Pohožaev manifold, we established the existence of Nehari–Pohožaev-type ground state solutions to the mentioned equation. Some recent results from the literature are generally improved and extended.