We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
M. Heins demonstrated that any finite Blaschke product defined on the open unit disc, provided it has at least one finite pole, possesses a nonzero residue. In this work, we extend Heins’ result by generalizing the class of functions under consideration. Specifically, we prove that a broader class of rational functions, defined on certain star-shaped domains in the complex plane, also exhibits this nonzero residue property. This class includes, as a special case, the family of finite Blaschke products. Our findings contribute to a better understanding of the analytic behavior of rational functions on more complex domains, opening new avenues for exploration in this area.
For $r\in(0,1)$, let $\mu \left( r\right) $ be the modulus of the plane Grötzsch ring $\mathbb{B}^2\setminus[0,r]$, where $\mathbb{B}^2$ is the unit disk. In this paper, we prove that
with $\theta _{n}\in \left( 0,1\right)$. Employing this series expansion, we obtain several absolutely monotonic and (logarithmically) completely monotonic functions involving $\mu \left( r\right) $, which yields some new results and extend certain known ones. Moreover, we give an affirmative answer to the conjecture proposed by Alzer and Richards in H. Alzer and K. Richards, On the modulus of the Grötzsch ring, J. Math. Anal. Appl. 432(1): (2015), 134–141, DOI 10.1016/j.jmaa.2015.06.057. As applications, several new sharp bounds and functional inequalities for $\mu \left( r\right) $ are established.
In loving memory of my beloved miniature dachshund Maddie (16 March 2002 – 16 March 2020). We consider nonlocal differential equations with convolution coefficients of the form
in the case in which $g$ can satisfy very generalized growth conditions; in addition, $M$ is allowed to be both sign-changing and vanishing. Existence of at least one positive solution to this equation equipped with boundary data is considered. We demonstrate that the nonlocal coefficient $M$ allows the forcing term $f$ to be free of almost all assumptions other than continuity.
We resolve some questions posed by Handelman in 1996 concerning log convex $L^1$ functions. In particular, we give a negative answer to a question he posed concerning the integrability of $h^2(x)/h(2x)$ when h is $L^1$ and log convex and $h(n)^{1/n}\rightarrow 1$.
In this paper, we consider the question of smoothness of slowly varying functions satisfying the modern definition that, in the last two decades, gained prevalence in the applications concerning function spaces and interpolation. We show that every slowly varying function of this type is equivalent to a slowly varying function that has continuous classical derivatives of all orders.
Let $[a_1(x),a_2(x),a_3(x),\ldots ]$ be the continued fraction expansion of an irrational number $x\in [0,1)$. We are concerned with the asymptotic behaviour of the product of consecutive partial quotients of x. We prove that, for Lebesgue almost all $x\in [0,1)$,
We also study the Baire category and the Hausdorff dimension of the set of points for which the above liminf and limsup have other different values and similarly analyse the weighted product of consecutive partial quotients.
Following the seminal paper by Bourgain, Brezis, and Mironescu, we focus on the asymptotic behaviour of some nonlocal functionals that, for each $u\in L^2(\mathbb {R}^N)$, are defined as the double integrals of weighted, squared difference quotients of $u$. Given a family of weights $\{\rho _{\varepsilon} \}$, $\varepsilon \in (0,\,1)$, we devise sufficient and necessary conditions on $\{\rho _{\varepsilon} \}$ for the associated nonlocal functionals to converge as $\varepsilon \to 0$ to a variant of the Dirichlet integral. Finally, some comparison between our result and the existing literature is provided.
Introducing a pair-parameter matrix Mittag–Leffler function, we study the uniqueness and Hyers–Ulam stability to a new fractional nonlinear partial integro-differential equation with variable coefficients and a mixed boundary condition using Banach’s contractive principle as well as Babenko’s approach in a Banach space. These investigations have serious applications since uniqueness and stability analysis are essential topics in various research fields. The techniques used also work for different types of differential equations with initial or boundary conditions, as well as integral equations. Moreover, we present a Python code to compute approximate values of our newly established pair-parameter matrix Mittag–Leffler functions, which extend the multivariate Mittag–Leffler function. A few examples are given to show applications of the key results obtained.
In this work, we study the existence of solutions of nonlinear fractional coupled system of $\varphi $-Hilfer type in the frame of Banach spaces. We improve a property of a measure of noncompactness in a suitably selected Banach space. Darbo’s fixed point theorem is applied to obtain a new existence result. Finally, the validity of our result is illustrated through an example.
For many years, there have been conducting research (e.g., by Bergelson, Furstenberg, Kojman, Kubiś, Shelah, Szeptycki, Weiss) into sequentially compact spaces that are, in a sense, topological counterparts of some combinatorial theorems, for instance, Ramsey’s theorem for coloring graphs, Hindman’s finite sums theorem, and van der Waerden’s arithmetical progressions theorem. These spaces are defined with the aid of different kinds of convergences: IP-convergence, R-convergence, and ordinary convergence.
The first aim of this paper is to present a unified approach to these various types of convergences and spaces. Then, using this unified approach, we prove some general theorems about existence of the considered spaces and show that all results obtained so far in this subject can be derived from our theorems.
The second aim of this paper is to obtain new results about the specific types of these spaces. For instance, we construct a Hausdorff Hindman space that is not an $\mathcal {I}_{1/n}$-space and a Hausdorff differentially compact space that is not Hindman. Moreover, we compare Ramsey spaces with other types of spaces. For instance, we construct a Ramsey space that is not Hindman and a Hindman space that is not Ramsey.
The last aim of this paper is to provide a characterization that shows when there exists a space of one considered type that is not of the other kind. This characterization is expressed in purely combinatorial manner with the aid of the so-called Katětov order that has been extensively examined for many years so far.
This paper may interest the general audience of mathematicians as the results we obtain are on the intersection of topology, combinatorics, set theory, and number theory.
We prove Abelian and Tauberian theorems for regularized Cauchy transforms of positive Borel measures on the real line whose distribution functions grow at most polynomially at infinity. In particular, we relate the asymptotics of the distribution functions to the asymptotics of the regularized Cauchy transform.
We show that the Hausdorff dimension of any slice of the graph of the Takagi function is bounded above by the Assouad dimension of the graph minus one, and that the bound is sharp. The result is deduced from a statement on more general self-affine sets, which is of independent interest. We also prove that Marstrand’s slicing theorem on the graph of the Takagi function extends to all slices if and only if the upper pointwise dimension of every projection of the length measure on the x-axis lifted to the graph is at least one.
I provide simplified proofs for each of the following fundamental theorems regarding selection principles:
(1) The Quasinormal Convergence Theorem, due to the author and Zdomskyy, asserting that a certain, important property of the space of continuous functions on a space is actually preserved by Borel images of that space.
(2) The Scheepers Diagram Last Theorem, due to Peng, completing all provable implications in the diagram.
(3) The Menger Game Theorem, due to Telgársky, determining when Bob has a winning strategy in the game version of Menger’s covering property.
(4) A lower bound on the additivity of Rothberger’s covering property, due to Carlson.
The simplified proofs lead to several new results.
We prove topological regularity results for isoperimetric sets in PI spaces having a suitable deformation property, which prescribes a control on the increment of the perimeter of sets under perturbations with balls. More precisely, we prove that isoperimetric sets are open, satisfy boundary density estimates and, under a uniform lower bound on the volumes of unit balls, are bounded. Our results apply, in particular, to the class of possibly collapsed $\mathrm {RCD}(K,N)$ spaces. As a consequence, the rigidity in the isoperimetric inequality on possibly collapsed $\mathrm {RCD}(0,N)$ spaces with Euclidean volume growth holds without the additional assumption on the boundedness of isoperimetric sets. Our strategy is of interest even in the Euclidean setting, as it simplifies some classical arguments.
On all Bergman–Besov Hilbert spaces on the unit disk, we find self-adjoint weighted shift operators that are differential operators of half-order whose commutators are the identity, thereby obtaining uncertainty relations in these spaces. We also obtain joint average uncertainty relations for pairs of commuting tuples of operators on the same spaces defined on the unit ball. We further identify functions that yield equality in some uncertainty inequalities.
We consider the simple random walk on the d-dimensional lattice $\mathbb{Z}^d$ ($d \geq 1$), traveling in potentials which are Bernoulli-distributed. The so-called Lyapunov exponent describes the cost of traveling for the simple random walk in the potential, and it is known that the Lyapunov exponent is strictly monotone in the parameter of the Bernoulli distribution. Hence the aim of this paper is to investigate the effect of the potential on the Lyapunov exponent more precisely, and we derive some Lipschitz-type estimates for the difference between the Lyapunov exponents.
In this paper, we investigate the regularity properties and determine the almost sure multifractal spectrum of a class of random functions constructed as sums of pulses with random dilations and translations. In addition, the continuity moduli of the sample paths of these stochastic processes are investigated.
where $\alpha>n$ and $\beta \in (0,1)$. In this paper, we focus on the regularity and the blow-up set of mild solutions to (0.1). First, we establish the Strichartz-type estimates for the homogeneous term $R_{\alpha ,\beta }(\varphi )$ and inhomogeneous term $G_{\alpha ,\beta }(g)$, respectively. Second, we obtain some space–time estimates for $G_{\alpha ,\beta }(g).$ Based on these estimates, we prove that the continuity of $R_{\alpha ,\beta }(\varphi )(t,x)$ and the Hölder continuity of $G_{\alpha ,\beta }(g)(t,x)$ on $\mathbb {R}^{1+n}_+,$ which implies a Moser–Trudinger-type estimate for $G_{\alpha ,\beta }.$ Then, for a newly introduced $L^{q}_{t}L^p_{x}$-capacity related to the space–time fractional dissipative operator $\partial ^{\beta }_{t}+(-\Delta )^{\alpha /2},$ we perform the geometric-measure-theoretic analysis and establish its basic properties. Especially, we estimate the capacity of fractional parabolic balls in $\mathbb {R}^{1+n}_+$ by using the Strichartz estimates and the Moser–Trudinger-type estimate for $G_{\alpha ,\beta }.$ A strong-type estimate of the $L^{q}_{t}L^p_{x}$-capacity and an embedding of Lorentz spaces are also derived. Based on these results, especially the Strichartz-type estimates and the $L^{q}_{t}L^p_{x}$-capacity of fractional parabolic balls, we deduce the size, i.e., the Hausdorff dimension, of the blow-up set of solutions to (0.1).
We prove that any continuous function can be locally approximated at a fixed point
$x_{0}$
by an uncountable family resistant to disruptions by the family of continuous functions for which
$x_{0}$
is a fixed point. In that context, we also consider the property of quasicontinuity.
Hardin and Taylor proved that any function on the reals—even a nowhere continuous one—can be correctly predicted, based solely on its past behavior, at almost every point in time. They showed that one could even arrange for the predictors to be robust with respect to simple time shifts, and asked whether they could be robust with respect to other, more complicated time distortions. This question was partially answered by Bajpai and Velleman, who provided upper and lower frontiers (in the subgroup lattice of $\mathrm{Homeo}^+(\mathbb {R})$) on how robust a predictor can possibly be. We improve both frontiers, some of which reduce ultimately to consequences of Hölder’s Theorem (that every Archimedean group is abelian).